Namespaces
Variants
Actions

Difference between revisions of "Wishart distribution"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m
Line 5: Line 5:
 
(<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w0980407.png" /> denotes the trace of a matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w0980408.png" />), if the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w0980409.png" /> is positive definite, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804010.png" /> in other cases. The Wishart distribution with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804011.png" /> degrees of freedom and with matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804012.png" /> is defined as the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804013.png" />-dimensional distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804014.png" /> with density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804015.png" />. The sample covariance matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804016.png" />, which is an estimator for the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804017.png" />, has a Wishart distribution.
 
(<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w0980407.png" /> denotes the trace of a matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w0980408.png" />), if the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w0980409.png" /> is positive definite, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804010.png" /> in other cases. The Wishart distribution with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804011.png" /> degrees of freedom and with matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804012.png" /> is defined as the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804013.png" />-dimensional distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804014.png" /> with density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804015.png" />. The sample covariance matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804016.png" />, which is an estimator for the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804017.png" />, has a Wishart distribution.
  
The Wishart distribution is a basic distribution in multivariate statistical analysis; it is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804018.png" />-dimensional generalization (in the sense above) of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804019.png" />-dimensional [["Chi-squared" distribution| "chi-squared"  distribution]].
+
The Wishart distribution is a basic distribution in multivariate statistical analysis; it is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804018.png" />-dimensional generalization (in the sense above) of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804019.png" />-dimensional [[Chi-squared distribution| "chi-squared"  distribution]].
  
 
If the independent random vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804021.png" /> have Wishart distributions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804023.png" />, respectively, then the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804024.png" /> has the Wishart distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804025.png" />.
 
If the independent random vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804021.png" /> have Wishart distributions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804023.png" />, respectively, then the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804024.png" /> has the Wishart distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804025.png" />.

Revision as of 11:59, 20 October 2012

The joint distribution of the elements from the sample covariance matrix of observations from a multivariate normal distribution. Let the results of observations have a -dimensional normal distribution with vector mean and covariance matrix . Then the joint density of the elements of the matrix is given by the formula

( denotes the trace of a matrix ), if the matrix is positive definite, and in other cases. The Wishart distribution with degrees of freedom and with matrix is defined as the -dimensional distribution with density . The sample covariance matrix , which is an estimator for the matrix , has a Wishart distribution.

The Wishart distribution is a basic distribution in multivariate statistical analysis; it is the -dimensional generalization (in the sense above) of the -dimensional "chi-squared" distribution.

If the independent random vectors and have Wishart distributions and , respectively, then the vector has the Wishart distribution .

The Wishart distribution was first used by J. Wishart [1].

References

[1] J. Wishart, Biometrika A , 20 (1928) pp. 32–52
[2] T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1958)


Comments

References

[a1] A.M. Khirsagar, "Multivariate analysis" , M. Dekker (1972)
[a2] R.J. Muirhead, "Aspects of multivariate statistical theory" , Wiley (1982)
How to Cite This Entry:
Wishart distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wishart_distribution&oldid=17673
This article was adapted from an original article by A.V. Prokhorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article