Difference between revisions of "Isoperimetric problem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
||
Line 26: | Line 26: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.A. Bliss, "Lectures on the calculus of variations" , Chicago Univ. Press (1947)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.Ya. Tslaf, "Calculus of variations and integral equations" , Moscow (1970) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.A. Lavrent'ev, L.A. Lyusternik, "A course in variational calculus" , Moscow-Leningrad (1950) (In Russian)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.A. Bliss, "Lectures on the calculus of variations" , Chicago Univ. Press (1947) {{MR|0017881}} {{ZBL|0036.34401}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.Ya. Tslaf, "Calculus of variations and integral equations" , Moscow (1970) (In Russian) {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.A. Lavrent'ev, L.A. Lyusternik, "A course in variational calculus" , Moscow-Leningrad (1950) (In Russian) {{MR|}} {{ZBL|}} </TD></TR></table> |
Line 42: | Line 42: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.E. [L.E. El'sgol'ts] Elsgolc, "Calculus of variations" , Pergamon (1961) (Translated from Russian)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.E. [L.E. El'sgol'ts] Elsgolc, "Calculus of variations" , Pergamon (1961) (Translated from Russian) {{MR|0344552}} {{MR|0279361}} {{MR|0209534}} {{MR|1532560}} {{MR|0133032}} {{MR|0098996}} {{MR|0051448}} {{ZBL|0101.32001}} </TD></TR></table> |
Revision as of 12:11, 27 September 2012
One of the fundamental problems in the classical calculus of variations. The isoperimetric problem consists in minimizing a functional
under constraints of the form
and certain boundary conditions.
The isoperimetric problem reduces to the Lagrange problem when new variables are introduced satisfying the differential equations
with boundary conditions
Necessary conditions for optimality in the isoperimetric problem have the same form as do the simplest problems in the calculus of variations related to the Lagrange function
The name "isoperimetric problem" goes back to the following classical question: Among all the curves with given perimeter in the plane, find the one that bounds the largest area.
References
[1] | G.A. Bliss, "Lectures on the calculus of variations" , Chicago Univ. Press (1947) MR0017881 Zbl 0036.34401 |
[2] | L.Ya. Tslaf, "Calculus of variations and integral equations" , Moscow (1970) (In Russian) |
[3] | M.A. Lavrent'ev, L.A. Lyusternik, "A course in variational calculus" , Moscow-Leningrad (1950) (In Russian) |
Comments
As stated above, the original isoperimetric problem is the problem of finding the geometric figure with maximal area and given perimeter. I.e., the problem is to find functions , such that
is minimized, subject to
where is a given constant.
References
[a1] | L.E. [L.E. El'sgol'ts] Elsgolc, "Calculus of variations" , Pergamon (1961) (Translated from Russian) MR0344552 MR0279361 MR0209534 MR1532560 MR0133032 MR0098996 MR0051448 Zbl 0101.32001 |
Isoperimetric problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Isoperimetric_problem&oldid=16510