Difference between revisions of "Elliptic partial differential equation"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
||
Line 37: | Line 37: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''1''' , Springer (1983)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''1''' , Springer (1983) {{MR|0717035}} {{MR|0705278}} {{ZBL|0521.35002}} {{ZBL|0521.35001}} </TD></TR></table> |
Revision as of 11:58, 27 September 2012
at a given point
A partial differential equation of order ,
such that is a differential operator of order less than , whose characteristic equation at ,
has no real roots except .
For second-order equations the characteristic form is quadratic,
and can be brought to the form
by a non-singular affine transformation of the variables , .
When all or all , the equation is said to be of elliptic type.
A partial differential equation is said to be of elliptic type in its domain of definition if it is elliptic at every point of this domain.
An elliptic partial differential is called uniformly elliptic if there are positive numbers and such that
For references see Differential equation, partial.
Comments
References
[a1] | L.V. Hörmander, "The analysis of linear partial differential operators" , 1 , Springer (1983) MR0717035 MR0705278 Zbl 0521.35002 Zbl 0521.35001 |
Elliptic partial differential equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Elliptic_partial_differential_equation&oldid=12485