|
|
Line 1: |
Line 1: |
− | ''finitely-additive function (on sets, on domains)''
| + | #REDIRECT[[Set function]] |
− | | |
− | A real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010650/a0106501.png" /> defined on a system of sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010650/a0106502.png" /> and such that
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010650/a0106503.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| |
− | | |
− | for any finite number of pairwise-disjoint sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010650/a0106504.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010650/a0106505.png" /> whose union also belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010650/a0106506.png" />. Countably-additive set functions are an important kind of additive functions (cf. [[Countably-additive set function|Countably-additive set function]]).
| |
− | | |
− | | |
− | | |
− | ====Comments====
| |
− | Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010650/a0106507.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010650/a0106508.png" />-algebra on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010650/a0106509.png" />. Then a non-negative function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010650/a01065010.png" /> (taking, possibly, the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010650/a01065011.png" />) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010650/a01065012.png" /> is an additive (finitely-additive, countably-additive) measure if it satisfies (*) for an arbitrary (respectively, finite, countable) number of disjoint sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010650/a01065013.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010650/a01065014.png" />.
| |
− | | |
− | Usually, a measure (sic) is a countably-additive measure.
| |
− | | |
− | ====References====
| |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.L. Royden, [[Royden, "Real analysis"|"Real analysis"]], Macmillan (1968)</TD></TR></table>
| |
Latest revision as of 11:19, 23 September 2012
How to Cite This Entry:
Additive function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Additive_function&oldid=25522
This article was adapted from an original article by A.P. Terekhin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article