Difference between revisions of "Singular distribution"
(Importing text file) |
(→References: Feller: internal link) |
||
| Line 26: | Line 26: | ||
====References==== | ====References==== | ||
| − | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes", Springer (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W. Feller, [[Feller, "An introduction to probability theory and its applications"|"An introduction to probability theory and its applications"]], '''2''', Wiley (1971)</TD></TR></table> |
Revision as of 11:28, 4 May 2012
A probability distribution on
concentrated on a set of Lebesgue measure zero and giving probability zero to every one-point set.
On the real line
, the definition of a singular distribution is equivalent to the following: A distribution is singular if the corresponding distribution function is continuous and its set of growth points has Lebesgue measure zero.
An example of a singular distribution on
is a distribution concentrated on the Cantor set, the so-called Cantor distribution, which can be described in the following way. Let
be a sequence of independent random variables, each of which takes on the values 0 and 1 with probability
. Then the random variable
![]() |
has a Cantor distribution, and its characteristic function is equal to
![]() |
An example of a singular distribution on
(
) is a uniform distribution on a sphere of positive radius.
The convolution of two singular distributions can be singular, absolutely continuous or a mixture of the two.
Any probability distribution
can be uniquely represented in the form
![]() |
where
is discrete,
is absolutely continuous,
is singular,
, and
(Lebesgue decomposition).
Sometimes, singularity is understood in a wider sense: A probability distribution
is singular with respect to a measure
if it is concentrated on a set
with
. Under this definition, every discrete distribution is singular with respect to Lebesgue measure.
For singular set functions, see also Absolute continuity of set functions.
References
| [1] | Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes", Springer (1969) (Translated from Russian) |
| [2] | W. Feller, "An introduction to probability theory and its applications", 2, Wiley (1971) |
Singular distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Singular_distribution&oldid=19272


