|
|
Line 1: |
Line 1: |
− | A [[Simple finite group|simple finite group]] that does not belong to any of the known infinite series of simple finite groups. The twenty-six sporadic simple groups are listed in the following table.''''''<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1">notation</td> <td colname="2" style="background-color:white;" colspan="1">name</td> <td colname="3" style="background-color:white;" colspan="1">order</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868701.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868702.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868703.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868704.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868705.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Mathieu groups</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868706.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868707.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868708.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868709.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687010.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687011.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Janko group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687012.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687014.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Hall–Janko group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687015.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687017.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Higman–Janko–McKay group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687018.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687019.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Janko group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687020.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687022.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687023.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687025.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Conway groups</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687026.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687028.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687029.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687031.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687032.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687034.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Fischer groups</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687035.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687037.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687038.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687039.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Higman–Sims group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687040.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687042.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Held–Higman–McKay group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687043.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687044.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Suzuki group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687045.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687046.png" /></td> <td colname="2" style="background-color:white;" colspan="1">McLaughlin group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687047.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687048.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Lyons group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687049.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687050.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Rudvalis group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687051.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687052.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687053.png" /></td> <td colname="2" style="background-color:white;" colspan="1">O'Nan–Sims group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687054.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687056.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Monster, Fischer–Griess group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687057.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687059.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Baby monster</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687060.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687063.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Thompson group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687064.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687065.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687066.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687067.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Harada–Norton group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687068.png" /></td> </tr> </tbody> </table> | + | A [[Simple finite group|simple finite group]] that does not belong to any of the known infinite series of simple finite groups. The twenty-six sporadic simple groups are listed in the following table. |
| | | |
− | </td></tr> </table>
| + | {| class="wikitable" style="margin: 1em auto 1em auto;" |
| + | |+ The twenty-six sporadic simple groups |
| + | ! notation |
| + | ! name |
| + | ! order |
| + | |- |
| + | | $M_{11}$ |
| + | | rowspan="5" | Mathieu groups |
| + | | $2^4.3^2.5.11$ |
| + | |- |
| + | | $M_{12}$ |
| + | | $2^6.3^3.5.11$ |
| + | |- |
| + | | $M_{22}$ |
| + | | $2^7.3^2.5.7.11$ |
| + | |- |
| + | | $M_{23}$ |
| + | | $2^7.3^2.5.7.11.23$ |
| + | |- |
| + | | $M_{24}$ |
| + | | $2^{10}.3^3.5.7.11.23$ |
| + | |- |
| + | | $J_1$ |
| + | | Janko group |
| + | | $2^3.3.5.7.11.19$ |
| + | |- |
| + | | $J_2$, $HJ$ |
| + | | Hall–Janko group |
| + | | $2^7.3^3.5^2.7$ |
| + | |- |
| + | | $J_3$, $HJM$ |
| + | | Hall–Janko–McKay group |
| + | | $2^7.3^5.5.17.19$ |
| + | |- |
| + | | $J_4$ |
| + | | Janko group |
| + | | $2^{21}.3^3.5.7.11^3.23.29.31.37.43$ |
| + | |- |
| + | | $Co_1$ |
| + | | rowspan="3" | Conway groups |
| + | | $2^{21}.3^9.5^4.7^2.11.13.23$ |
| + | |- |
| + | | $Co_2$ |
| + | | $2^{18}.3^6.5^3.7.11.23$ |
| + | |- |
| + | | $Co_3$ |
| + | | $2^{10}.3^7.5^3.7.11.23$ |
| + | |- |
| + | | $F_{22}$, $M(22)$ |
| + | | rowspan="3" | Fischer groups |
| + | | $2^{17}.3^9.5^2.7.11.13$ |
| + | |- |
| + | | $F_{23}$, $M(23)$ |
| + | | $2^{18}.3^{13}.5^2.7.11.13.17.23$ |
| + | |- |
| + | | $F_{24}^\prime$, $M(24)^\prime$ |
| + | | $2^{21}.3^{16}.5^2.7^3.11.13.17.23.29$ |
| + | |- |
| + | | $HS$ |
| + | | Higman–Sims group |
| + | | $2^9.3^2.5^3.7.11$ |
| + | |- |
| + | | $He$, $HHM$ |
| + | | Held–Higman–McKay group |
| + | | $2^{10}.3^3.5^2.7^3.17$ |
| + | |- |
| + | | $Suz$ |
| + | | Suzuki group |
| + | | $2^{13}.3^7.5^2.7.11.13$ |
| + | |- |
| + | | $M^c$ |
| + | | McLaughlin group |
| + | | $2^7.3^6.5^3.7.11$ |
| + | |- |
| + | | $Ly$ |
| + | | Lyons group |
| + | | $2^8.3^7.5^6.7.11.31.37.67$ |
| + | |- |
| + | | $Ru$ |
| + | | Rudvalis group |
| + | | $2^{14}.3^3.5^3.7.13.29$ |
| + | |- |
| + | | $O'N$, $O'NS$ |
| + | | O'Nan–Sims group |
| + | | $2^9.3^4.5.7^3.11.19.31$ |
| + | |- |
| + | | $F_1$, $M$ |
| + | | Monster, Fischer–Griess group |
| + | | $2^{46}.3^{20}.5^9.7^6.11^2.13^3.17.19.23.29.31.41.47.59.71$ |
| + | |- |
| + | | $F_2$, $B$ |
| + | | Baby monster |
| + | | $2^{41}.3^{13}.5^6.7^2.11.13.17.19.23.31.47$ |
| + | |- |
| + | | $F_3$, $E$, $Th$ |
| + | | Thompson group |
| + | | $2^{15}.3^{10}.5^3.7^2.13.19.31$ |
| + | |- |
| + | | $F_5$, $D$, $HN$ |
| + | | Harada–Norton group |
| + | | $2^{14}.3^6.5^6.7.11.19$ |
| + | |} |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.A. Syskin, "Abstract properties of the simple sporadic groups" ''Russian Math. Surveys'' , '''35''' : 5 (1980) pp. 209–246 ''Uspekhi Mat. Nauk'' , '''35''' : 5 (1980) pp. 181–212</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Aschbacher, "The finite simple groups and their classification" , Yale Univ. Press (1980)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.A. Syskin, "Abstract properties of the simple sporadic groups" ''Russian Math. Surveys'' , '''35''' : 5 (1980) pp. 209–246 ''Uspekhi Mat. Nauk'' , '''35''' : 5 (1980) pp. 181–212</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Aschbacher, "The finite simple groups and their classification" , Yale Univ. Press (1980)</TD></TR></table> |
− | | |
− | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | The recent classification of the finite simple groups (1981) has led to the conclusion that — up to a uniqueness proof for the Monster as the only simple group of its order with certain additional properties — every non-Abelian finite simple group is isomorphic to: an [[Alternating group|alternating group]] on at least <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687069.png" /> letters, a group of (twisted or untwisted) Lie type, or one of the above <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687070.png" /> sporadic groups. See [[#References|[a2]]] for a discussion of the proof. | + | The recent classification of the finite simple groups (1981) has led to the conclusion that — up to a uniqueness proof for the Monster as the only simple group of its order with certain additional properties — every non-Abelian finite simple group is isomorphic to: an [[Alternating group|alternating group]] on at least 5 letters, a group of (twisted or untwisted) Lie type, or one of the above 26 sporadic groups. See [[#References|[a2]]] for a discussion of the proof. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, "Atlas of finite groups" , Clarendon Press (1985)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Gorenstein, "Finite simple groups. An introduction to their classification" , Plenum (1982)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, "Atlas of finite groups" , Clarendon Press (1985)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Gorenstein, "Finite simple groups. An introduction to their classification" , Plenum (1982)</TD></TR></table> |