Namespaces
Variants
Actions

Difference between revisions of "Bohr-Mollerup theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
Line 1: Line 1:
The [[Gamma-function|gamma-function]] on the positive real axis is the unique positive, logarithmically convex function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120330/b1203301.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120330/b1203302.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120330/b1203303.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120330/b1203304.png" />.
+
The [[Gamma-function|gamma-function]] on the positive real axis is the unique positive, logarithmically convex function $f$ such that $f(1)=1$ and $f(x+1) = xf(x)$ for all $x$.
 +
 
  
 
====References====
 
====References====
 +
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.P. Boas,  "Bohr's power series theorem in several variables"  ''Proc. Amer. Math. Soc.'' , '''125'''  (1997)  pp. 2975–2979</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Caratheodory,  "Theory of functions of a complex variable" , '''1''' , Chelsea  (1983)  pp. Sects. 274–275</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.P. Boas,  "Bohr's power series theorem in several variables"  ''Proc. Amer. Math. Soc.'' , '''125'''  (1997)  pp. 2975–2979</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Caratheodory,  "Theory of functions of a complex variable" , '''1''' , Chelsea  (1983)  pp. Sects. 274–275</TD></TR></table>

Revision as of 20:46, 27 April 2012

The gamma-function on the positive real axis is the unique positive, logarithmically convex function $f$ such that $f(1)=1$ and $f(x+1) = xf(x)$ for all $x$.


References

[a1] H.P. Boas, "Bohr's power series theorem in several variables" Proc. Amer. Math. Soc. , 125 (1997) pp. 2975–2979
[a2] C. Caratheodory, "Theory of functions of a complex variable" , 1 , Chelsea (1983) pp. Sects. 274–275
How to Cite This Entry:
Bohr-Mollerup theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bohr-Mollerup_theorem&oldid=22155
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article