Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
Line 1: Line 1:
====On terminology====
+
====Criticism====
  
The term "standard probability space" is used in {{Cite|I}}. The same, or very similar, notion appears also as: "Lebesgue space" {{Cite|Ro}}, {{Cite|Ru}}, {{Cite|P}}, {{Cite|G}}; "standard Lebesgue space" {{Cite|G}}; "Lebesgue-Rohlin space" {{Cite|H}}, {{Cite|B}}; and "L. R. space" {{Cite|H}}.
+
A quote from {{Cite|Dur|Sect. 1.4(c), p. 33}}:
 +
:
 +
: $(S,\mathcal S)$ is said to be ''nice'' if there is a 1-1 map $\phi$ from $S$ into $\R$ so that $\phi$ and $\phi^{-1}$ are both measurable.
 +
:
 +
: Such spaces are often called ''standard Borel spaces,'' but we already have too many things named after Borel. The next result shows that most spaces arising in applications are nice.
 +
:
 +
: (4.12) ''Theorem.'' If $S$ is a Borel subset of a complete separable metric space $M$, and $\mathcal S$ is the collection of Borel subsets of $S$, then $(S,\mathcal S)$ is nice.
 +
:
  
Some authors admit totally finite (not necessarily probability) measures {{Cite|P}},  {{Cite|B}}. Note also "standard σ-finite measure" in {{Cite|Mac}}. Some authors exclude spaces of cardinality higher than continuum ({{Cite|Ro}}, {{Cite|Ru}}, {{Cite|G}}, but not {{Cite|I}}, {{Cite|H}}, {{Cite|Mac}},  {{Cite|P}}, {{Cite|B}}) even though such space can be almost isomorphic to $(0,1)$ with Lebesgue measure (since it can contain a null set of arbitrary cardinality). Also, some authors do not insist on completeness {{Cite|B}}, {{Cite|G}}.
 
 
====Criticism====
 
  
According to {{Cite|Mal}},
 
* a measure is called separable if the corresponding $L_1$ space is separable {{Cite|Mal|Sect. IV.6.0}};
 
* every separable complete nonatomic probability space is isomorphic to $[0,1]$ with Lebesgue measure {{Cite|Mal|Sect. IV.6.4.2: "structure theorem (nonatomic case)"}}.
 
The proof provides a measure preserving map from the given space to $[0,1]$ that generates the given σ-algebra. However, such map is not necessarily an isomorphism. Its image must be of full ''outer'' measure, but not of full ''inner'' measure, which is a manifestation of the "image measure catastrophe" (see {{Cite|KP|p. 94}}, {{Cite|D|p. 1002}}).
 
  
Further, in {{Cite|Mal|Sect. IV.6.4.3: "structure theorem (general case)"}} it is claimed that every separable (as defined there) complete probability space is standard (as defined here), which is wrong, of course.
 
  
 
====References====
 
====References====
Line 18: Line 17:
 
{|
 
{|
 
|valign="top"|{{Ref|I}}||  Kiyosi Itô, "Introduction to  probability theory", Cambridge (1984).    {{MR|0777504}}    {{ZBL|0545.60001}}
 
|valign="top"|{{Ref|I}}||  Kiyosi Itô, "Introduction to  probability theory", Cambridge (1984).    {{MR|0777504}}    {{ZBL|0545.60001}}
|-
 
|valign="top"|{{Ref|Ru}}||  Thierry de la Rue, "Espaces de Lebesgue", ''Séminaire de Probabilités  XXVII,'' Lecture Notes in Mathematics, '''1557''' (1993), Springer,  Berlin,  pp. 15–21.    {{MR|1308547}}    {{ZBL|0788.60001}}
 
|-
 
|valign="top"|{{Ref|H}}||  Jean  Haezendonck, "Abstract  Lebesgue-Rohlin  spaces",  ''Bull. Soc.  Math.  de Belgique'' '''25'''  (1973), 243–258.       {{MR|0335733}}     {{ZBL|0308.60006}}
 
|-
 
|valign="top"|{{Ref|HN}}||  P.R. Halmos, J. von Neumann, "Operator  methods in classical mechanics,  II", ''Annals of Mathematics (2)''  '''43''' (1942), 332–350.       {{MR|0006617}}      {{ZBL|0063.01888}}
 
|-
 
|valign="top"|{{Ref|Ro}}||  V.A. Rokhlin, (1962), "On the fundamental ideas of measure theory",  ''Translations (American Mathematical Society) Series 1,'' 10 (1962),  1–54.   {{MR|0047744}}   Translated from Russian:  Рохлин, В. А. (1949), "Об основных понятиях теории меры", Математический  Сборник (Новая Серия) 25(67): 107–150.   {{MR|0030584}}
 
|-
 
|valign="top"|{{Ref|P}}||  Karl Petersen, "Ergodic theory", Cambridge  (1983).   {{MR|0833286}}   {{ZBL|0507.28010}}
 
|-
 
|valign="top"|{{Ref|G}}|| Eli Glasner,  "Ergodic theory via joinings", Amer. Math. Soc. (2003).    {{MR|1958753}}   {{ZBL|1038.37002}}
 
|-
 
|valign="top"|{{Ref|B}}||  V.I. Bogachev, "Measure theory",    Springer-Verlag (2007).    {{MR|2267655}}     {{ZBL|1120.28001}}
 
|-
 
|valign="top"|{{Ref|Mac}}||  George W. Mackey,  "Borel  structure in groups and their duals",  ''Trans.  Amer. Math. Soc.''  '''85''' (1957), 134–165.    {{MR|0089999}}      {{ZBL|0082.11201}}
 
|-
 
|valign="top"|{{Ref|Mal}}|| Paul  Malliavin, "Integration and  probability", Springer-Verlag (1995).    {{MR|1335234}}     {{ZBL|0874.28001}}
 
|-
 
|valign="top"|{{Ref|KP}}|| Joseph Kupka, Karel Prikry, "The measurability of uncountable unions", ''Amer. Math. Monthly'' '''91''' (1984), 85–97.    {{MR|0729548}}     {{ZBL|0533.28010}}
 
|-
 
|valign="top"|{{Ref|D}}|| R.M. Dudley, "Nonmetric compact spaces and nonmeasurable processes", ''Proc. Amer. Math. Soc.'' '''108''' (1990), 1001–1005.    {{MR|0994775}}     {{ZBL|0697.60037}}
 
 
|}
 
|}

Revision as of 07:52, 7 April 2012

Criticism

A quote from [Dur, Sect. 1.4(c), p. 33]:

$(S,\mathcal S)$ is said to be nice if there is a 1-1 map $\phi$ from $S$ into $\R$ so that $\phi$ and $\phi^{-1}$ are both measurable.
Such spaces are often called standard Borel spaces, but we already have too many things named after Borel. The next result shows that most spaces arising in applications are nice.
(4.12) Theorem. If $S$ is a Borel subset of a complete separable metric space $M$, and $\mathcal S$ is the collection of Borel subsets of $S$, then $(S,\mathcal S)$ is nice.



References

[I] Kiyosi Itô, "Introduction to probability theory", Cambridge (1984).   MR0777504   Zbl 0545.60001
How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=24250