Namespaces
Variants
Actions

Difference between revisions of "Bott periodicity theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 6: Line 6:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Bott,   "The stable homotopy of the classical groups" ''Ann. of Math. (2)'' , '''70''' : 2 (1959) pp. 313–337</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.W. Milnor,   "Morse theory" , Princeton Univ. Press (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.F. Atiyah,   "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017220/b01722032.png" />-theory: lectures" , Benjamin (1967)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D. Husemoller,   "Fibre bundles" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J.C. Moore,   "On the periodicity theorem for complex vector bundles" , ''Sem. H. Cartan'' (1959–1960)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M.F. Atiyah,   R. Bott,   "On the periodicity theorem for complex vector bundles" ''Acta Math.'' , '''112''' (1964) pp. 229–247</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Bott, "The stable homotopy of the classical groups" ''Ann. of Math. (2)'' , '''70''' : 2 (1959) pp. 313–337 {{MR|0110104}} {{ZBL|0129.15601}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.W. Milnor, "Morse theory" , Princeton Univ. Press (1963) {{MR|0163331}} {{ZBL|0108.10401}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.F. Atiyah, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017220/b01722032.png" />-theory: lectures" , Benjamin (1967) {{MR|224083}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) {{MR|0229247}} {{ZBL|0144.44804}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J.C. Moore, "On the periodicity theorem for complex vector bundles" , ''Sem. H. Cartan'' (1959–1960)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M.F. Atiyah, R. Bott, "On the periodicity theorem for complex vector bundles" ''Acta Math.'' , '''112''' (1964) pp. 229–247 {{MR|0178470}} {{ZBL|0131.38201}} </TD></TR></table>
  
  
Line 14: Line 14:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Bott,   "Lectures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017220/b01722033.png" />" , Benjamin (1969)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Karoubi,   "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017220/b01722034.png" />-theory" , Springer (1978)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Bott, "Lectures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017220/b01722033.png" />" , Benjamin (1969) {{MR|0258020}} {{ZBL|0194.23904}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Karoubi, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017220/b01722034.png" />-theory" , Springer (1978) {{MR|0488029}} {{ZBL|0382.55002}} </TD></TR></table>

Revision as of 17:31, 31 March 2012

A fundamental theorem in -theory which, in its simplest form, states that for any (compact) space there exists an isomorphism between the rings and . More generally, if is a complex vector bundle over and is the projectivization of , then the ring is a -algebra with one generator and a unique relation , where is the image of a vector bundle in and is the Hopf fibration over . This fact is equivalent to the existence of a Thom isomorphism in -theory for complex vector bundles. In particular, . Bott's periodicity theorem was first demonstrated by R. Bott [1] using Morse theory, and was then re-formulated in terms of -theory [6]; an analogous theorem has also been demonstrated for real fibre bundles.

Bott's periodicity theorem establishes the property of the stable homotopy type of the unitary group , consisting in the fact that , where is the space of loops on , and is weak homotopy equivalence, in particular for where is the -th homotopy group. Similarly, for the orthogonal group :

References

[1] R. Bott, "The stable homotopy of the classical groups" Ann. of Math. (2) , 70 : 2 (1959) pp. 313–337 MR0110104 Zbl 0129.15601
[2] J.W. Milnor, "Morse theory" , Princeton Univ. Press (1963) MR0163331 Zbl 0108.10401
[3] M.F. Atiyah, "-theory: lectures" , Benjamin (1967) MR224083
[4] D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) MR0229247 Zbl 0144.44804
[5] J.C. Moore, "On the periodicity theorem for complex vector bundles" , Sem. H. Cartan (1959–1960)
[6] M.F. Atiyah, R. Bott, "On the periodicity theorem for complex vector bundles" Acta Math. , 112 (1964) pp. 229–247 MR0178470 Zbl 0131.38201


Comments

References

[a1] R. Bott, "Lectures on " , Benjamin (1969) MR0258020 Zbl 0194.23904
[a2] M. Karoubi, "-theory" , Springer (1978) MR0488029 Zbl 0382.55002
How to Cite This Entry:
Bott periodicity theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bott_periodicity_theorem&oldid=18004
This article was adapted from an original article by A.F. Shchekut'ev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article