Namespaces
Variants
Actions

Difference between revisions of "Separable mapping"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 8: Line 8:
 
A morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448029.png" /> of algebraic varieties or schemes is called dominant if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448030.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448031.png" />.
 
A morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448029.png" /> of algebraic varieties or schemes is called dominant if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448030.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448031.png" />.
  
In the Russian literature the phrase "separabel'noe otobrazhenie" which literally translates as "separable mapping" is sometimes encountered in the meaning "separated mapping" .
+
In the Russian literature the phrase "separabel'noe otobrazhenie" which literally translates as "separable mapping" is sometimes encountered in the meaning "separated mapping" .
  
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448032.png" /> be the affine plane, and put <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448033.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448034.png" /> be obtained by glueing two copies of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448035.png" /> along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448036.png" /> by the identity. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448037.png" /> is a non-separated scheme.
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448032.png" /> be the affine plane, and put <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448033.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448034.png" /> be obtained by glueing two copies of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448035.png" /> along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448036.png" /> by the identity. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448037.png" /> is a non-separated scheme.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne,   "Algebraic geometry" , Springer (1977) pp. Sect. IV.2</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table>

Revision as of 21:56, 30 March 2012

A dominant morphism between irreducible algebraic varieties and , , for which the field is a separable extension of the subfield (isomorphic to in view of the dominance). Non-separable mappings exist only when the characteristic of the ground field is larger than 0. If is a finite dominant morphism and its degree is not divisible by , then it is separable. For a separable mapping there exists a non-empty open set such that for all the differential of surjectively maps the tangent space into , and conversely: If the points and are non-singular and is surjective, then is a separable mapping.

A morphism of schemes and is called separated if the diagonal in is closed. A composite of separated morphisms is separated; is separated if and only if for any point there is a neighbourhood such that the morphism is separated. A morphism of affine schemes is always separated. There are conditions for Noetherian schemes to be separated.


Comments

A morphism of algebraic varieties or schemes is called dominant if is dense in .

In the Russian literature the phrase "separabel'noe otobrazhenie" which literally translates as "separable mapping" is sometimes encountered in the meaning "separated mapping" .

Let be the affine plane, and put . Let be obtained by glueing two copies of along by the identity. Then is a non-separated scheme.

References

[a1] R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 MR0463157 Zbl 0367.14001
How to Cite This Entry:
Separable mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Separable_mapping&oldid=17689
This article was adapted from an original article by A.N. Rudakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article