Namespaces
Variants
Actions

Difference between revisions of "Quasi-affine scheme"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 7: Line 7:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Grothendieck,   "Étude globale élémentaire de quelques classes de morphismes" ''Publ. Math. IHES'' , '''8''' (1961) pp. Sect. 5.1</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Hartshorne,   "Algebraic geometry" , Springer (1977) pp. 3, 21</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Grothendieck, "Étude globale élémentaire de quelques classes de morphismes" ''Publ. Math. IHES'' , '''8''' (1961) pp. Sect. 5.1 {{MR|0217084}} {{MR|0163909}} {{ZBL|0118.36206}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. 3, 21 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table>

Revision as of 21:55, 30 March 2012

A scheme isomorphic to an open compact subscheme of an affine scheme. A compact scheme is quasi-affine if and only if one of the following equivalent conditions holds: 1) the canonical morphism is an open imbedding; and 2) any quasi-coherent sheaf of -modules is generated by global sections. A morphism of schemes is called quasi-affine if for any open affine subscheme in the inverse image is a quasi-affine scheme.


Comments

A quasi-affine variety is an open subvariety of an affine algebraic variety. (As an open subspace of a Noetherian space it is automatically compact.) An example of a quasi-affine variety that is not affine is .

References

[a1] A. Grothendieck, "Étude globale élémentaire de quelques classes de morphismes" Publ. Math. IHES , 8 (1961) pp. Sect. 5.1 MR0217084 MR0163909 Zbl 0118.36206
[a2] R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. 3, 21 MR0463157 Zbl 0367.14001
How to Cite This Entry:
Quasi-affine scheme. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-affine_scheme&oldid=17637
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article