Difference between revisions of "User:Boris Tsirelson/sandbox1"
From Encyclopedia of Mathematics
Line 20: | Line 20: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
====References==== | ====References==== |
Revision as of 19:17, 15 March 2012
Measure algebra may refer to:
- algebra of measures on a topological group with the operation of convolution; see measure algebra (harmonic analysis);
- normed Boolean algebra, either in general or consisting of equivalence classes of measurable sets; see measure algebra (measure theory).
Measure algebra (measure theory)
Category:Classical measure theory
$\newcommand{\Om}{\Omega} \newcommand{\om}{\omega} \newcommand{\F}{\mathcal F} \newcommand{\B}{\mathcal B} \newcommand{\M}{\mathcal M} $ A measure algebra is a pair $(B,\mu)$ where $B$ is a Boolean σ-algebra and $\mu$ is a (strictly) positive measure on $B$. However, about the greatest value $\mu(\bsone_B)$ of $\mu$, assumptions differ from $\mu(\bsone_B)=1$ (that is, $\mu$ is a probability measure) in [Ha2, p. 43] and [K, Sect. 17.F] to $\mu(\bsone_B)<\infty$ (that is, $\mu$ is a totally finite measure) in [G, Sect. 2.1] to $\mu(\bsone_B)\le\infty$ in [P, Sect. 1.4C] and [Ha1, Sect. 40].
References
[P] | Karl Petersen, "Ergodic theory", Cambridge (1983). MR0833286 Zbl 0507.28010 |
[H1] | P.R. Halmos, "Measure theory", Van Nostrand (1950). MR0033869 Zbl 0040.16802 |
[H2] | P.R. Halmos, "Lectures on ergodic theory", Math. Soc. Japan (1956). MR0097489 Zbl 0073.09302 |
[G] | Eli Glasner, "Ergodic theory via joinings", Amer. Math. Soc. (2003). MR1958753 Zbl 1038.37002 |
[K] | Alexander S. Kechris, "Classical descriptive set theory", Springer-Verlag (1995). MR1321597 Zbl 0819.04002 |
[Ru] | Thierry de la Rue, "Espaces de Lebesgue", Séminaire de Probabilités XXVII, Lecture Notes in Mathematics, 1557 (1993), Springer, Berlin, pp. 15–21. MR1308547 Zbl 0788.60001 |
[H] | Jean Haezendonck, "Abstract Lebesgue-Rohlin spaces", Bull. Soc. Math. de Belgique 25 (1973), 243–258. MR0335733 Zbl 0308.60006 |
[HN] | P.R. Halmos, J. von Neumann, "Operator methods in classical mechanics, II", Annals of Mathematics (2) 43 (1942), 332–350. MR0006617 Zbl 0063.01888 |
[Ro] | V.A. Rokhlin, (1962), "On the fundamental ideas of measure theory", Translations (American Mathematical Society) Series 1, 10 (1962), 1–54. MR0047744 Translated from Russian: Рохлин, В. А. (1949), "Об основных понятиях теории меры", Математический Сборник (Новая Серия) 25(67): 107–150. MR0030584 |
[F] | D.H. Fremlin, "Measure theory", Torres Fremlin, Colchester. Vol. 1: 2004 MR2462519 Zbl 1162.28001; Vol. 2: 2003 MR2462280 Zbl 1165.28001; Vol. 3: 2004 MR2459668 Zbl 1165.28002; Vol. 4: 2006 MR2462372 Zbl 1166.28001 |
How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=21685
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=21685