Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
Line 28: Line 28:
 
* it is a [[standard Borel space]] endowed with a [[probability measure]], completed, and possibly augmented with a [[Measure space#null|null set]];
 
* it is a [[standard Borel space]] endowed with a [[probability measure]], completed, and possibly augmented with a [[Measure space#null|null set]];
 
* it is [[Measure space#Completion|complete]], [[Measure space#Perfect and standard|perfect]], and the [[Hilbert space#L2 space|corresponding Hilbert space]] is separable.
 
* it is [[Measure space#Completion|complete]], [[Measure space#Perfect and standard|perfect]], and the [[Hilbert space#L2 space|corresponding Hilbert space]] is separable.
 
====The isomorphism theorem====
 
 
Every standard probability space consists of an [[Measure space#Atoms and continuity|atomic]] (discrete) part and an atomless (continuous) part (each part may be empty). The discrete part is finite or countable; here, all subsets are  measurable, and the probability of each subset is the sum of probabilities of its elements.
 
 
'''Theorem 1.''' All atomless standard probability spaces are mutually almost isomorphic.
 
 
That  is, up to almost isomorphism we have "the" atomless standard probability space. Its "incarnations" include the spaces $\R^n$ with atomless probability distributions (be they [[Continuous distribution|absolutely continuous]], [[Singular distribution|singular]] or mixed), as well as the set of all continuous functions $[0,\infty)\to\R$ with the [[Wiener measure]]. That is instructive: topological notions such as dimension do not apply to probability spaces.
 
  
 
====References====
 
====References====

Revision as of 19:16, 15 March 2012

Measure algebra may refer to:

Measure algebra (measure theory)

Template:MSC.

Category:Classical measure theory


$\newcommand{\Om}{\Omega} \newcommand{\om}{\omega} \newcommand{\F}{\mathcal F} \newcommand{\B}{\mathcal B} \newcommand{\M}{\mathcal M} $ A measure algebra is a pair $(B,\mu)$ where $B$ is a Boolean σ-algebra and $\mu$ is a (strictly) positive measure on $B$. However, about the greatest value $\mu(\bsone_B)$ of $\mu$, assumptions differ from $\mu(\bsone_B)=1$ (that is, $\mu$ is a probability measure) in [Ha2, p. 43] and [K, Sect. 17.F] to $\mu(\bsone_B)<\infty$ (that is, $\mu$ is a totally finite measure) in [G, Sect. 2.1] to $\mu(\bsone_B)\le\infty$ in [P, Sect. 1.4C] and [Ha1, Sect. 40].



Also: Lebesgue-Rokhlin space


A probability space is called standard if it satisfies the following equivalent conditions:

References

[P] Karl Petersen, "Ergodic theory", Cambridge (1983).   MR0833286   Zbl 0507.28010
[H1] P.R. Halmos, "Measure theory", Van Nostrand (1950).   MR0033869   Zbl 0040.16802
[H2] P.R. Halmos, "Lectures on ergodic theory", Math. Soc. Japan (1956).   MR0097489   Zbl 0073.09302
[G] Eli Glasner, "Ergodic theory via joinings", Amer. Math. Soc. (2003).   MR1958753   Zbl 1038.37002
[K] Alexander S. Kechris, "Classical descriptive set theory", Springer-Verlag (1995).   MR1321597   Zbl 0819.04002
[Ru] Thierry de la Rue, "Espaces de Lebesgue", Séminaire de Probabilités XXVII, Lecture Notes in Mathematics, 1557 (1993), Springer, Berlin, pp. 15–21.   MR1308547   Zbl 0788.60001
[H] Jean Haezendonck, "Abstract Lebesgue-Rohlin spaces", Bull. Soc. Math. de Belgique 25 (1973), 243–258.   MR0335733   Zbl 0308.60006
[HN] P.R. Halmos, J. von Neumann, "Operator methods in classical mechanics, II", Annals of Mathematics (2) 43 (1942), 332–350.   MR0006617   Zbl 0063.01888
[Ro] V.A. Rokhlin, (1962), "On the fundamental ideas of measure theory", Translations (American Mathematical Society) Series 1, 10 (1962), 1–54.   MR0047744   Translated from Russian: Рохлин, В. А. (1949), "Об основных понятиях теории меры", Математический Сборник (Новая Серия) 25(67): 107–150.   MR0030584
[F] D.H. Fremlin, "Measure theory", Torres Fremlin, Colchester. Vol. 1: 2004   MR2462519   Zbl 1162.28001; Vol. 2: 2003   MR2462280   Zbl 1165.28001; Vol. 3: 2004   MR2459668   Zbl 1165.28002; Vol. 4: 2006   MR2462372   Zbl 1166.28001
How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=21684