Difference between revisions of "User:Boris Tsirelson/sandbox1"
From Encyclopedia of Mathematics
(Blanked the page) |
|||
Line 1: | Line 1: | ||
+ | $\newcommand{\Om}{\Omega} | ||
+ | \newcommand{\A}{\mathcal A} | ||
+ | \newcommand{\B}{\mathcal B} | ||
+ | \newcommand{\M}{\mathcal M} $ | ||
+ | The term "universally measurable" may be applied to | ||
+ | * a [[measurable space]]; | ||
+ | * a subset of a measurable space; | ||
+ | * a [[metric space]]. | ||
+ | Let $(X,\A)$ be a measurable space. A subset $A\subset X$ is called universally measurable, if it is $\mu$-measurable for every finite measure $\mu$ on $(X,\A)$. In other words: $\mu_*(A)=\mu^*(A)$ where $\mu_*,\mu^*$ are the inner and outer measures for $\mu$, that is, | ||
+ | : $ \mu_*(A) = \max\{\mu(B):B\in\A,B\subset A\}\,,\quad | ||
+ | \mu^*(A) = \min\{\mu(B):B\in\A,B\supset A\}\,.$ | ||
+ | |||
+ | ====References==== | ||
+ | |||
+ | {| | ||
+ | |valign="top"|{{Ref|T}}|| Terence Tao, "An introduction to measure theory", AMS (2011). {{MR|2827917}} {{ZBL|05952932}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|P}}|| David Pollard, "A user's guide to measure theoretic probability", Cambridge (2002). {{MR|1873379}} {{ZBL|0992.60001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|K}}|| Alexander S. Kechris, "Classical descriptive set theory", Springer-Verlag (1995). {{MR|1321597}} {{ZBL|0819.04002}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|BK}}|| Howard Becker and Alexander S. Kechris, "The descriptive set theory of Polish group actions", Cambridge (1996). {{MR|1425877}} {{ZBL|0949.54052}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|D}}|| Richard M. Dudley, "Real analysis and probability", Wadsworth&Brooks/Cole (1989). {{MR|0982264}} {{ZBL|0686.60001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|M}}|| George W. Mackey, "Borel structure in groups and their duals", ''Trans. Amer. Math. Soc.'' '''85''' (1957), 134–165. {{MR|0089999}} {{ZBL|0082.11201}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|H}}|| Paul R. Halmos, "Measure theory", v. Nostrand (1950). {{MR|0033869}} {{ZBL|0040.16802}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|R}}|| Walter Rudin, "Principles of mathematical analysis", McGraw-Hill (1953). {{MR|0055409}} {{ZBL|0052.05301}} | ||
+ | |} |
Revision as of 19:35, 16 February 2012
$\newcommand{\Om}{\Omega} \newcommand{\A}{\mathcal A} \newcommand{\B}{\mathcal B} \newcommand{\M}{\mathcal M} $ The term "universally measurable" may be applied to
- a measurable space;
- a subset of a measurable space;
- a metric space.
Let $(X,\A)$ be a measurable space. A subset $A\subset X$ is called universally measurable, if it is $\mu$-measurable for every finite measure $\mu$ on $(X,\A)$. In other words: $\mu_*(A)=\mu^*(A)$ where $\mu_*,\mu^*$ are the inner and outer measures for $\mu$, that is,
- $ \mu_*(A) = \max\{\mu(B):B\in\A,B\subset A\}\,,\quad \mu^*(A) = \min\{\mu(B):B\in\A,B\supset A\}\,.$
References
[T] | Terence Tao, "An introduction to measure theory", AMS (2011). MR2827917 Zbl 05952932 |
[P] | David Pollard, "A user's guide to measure theoretic probability", Cambridge (2002). MR1873379 Zbl 0992.60001 |
[K] | Alexander S. Kechris, "Classical descriptive set theory", Springer-Verlag (1995). MR1321597 Zbl 0819.04002 |
[BK] | Howard Becker and Alexander S. Kechris, "The descriptive set theory of Polish group actions", Cambridge (1996). MR1425877 Zbl 0949.54052 |
[D] | Richard M. Dudley, "Real analysis and probability", Wadsworth&Brooks/Cole (1989). MR0982264 Zbl 0686.60001 |
[M] | George W. Mackey, "Borel structure in groups and their duals", Trans. Amer. Math. Soc. 85 (1957), 134–165. MR0089999 Zbl 0082.11201 |
[H] | Paul R. Halmos, "Measure theory", v. Nostrand (1950). MR0033869 Zbl 0040.16802 |
[R] | Walter Rudin, "Principles of mathematical analysis", McGraw-Hill (1953). MR0055409 Zbl 0052.05301 |
How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=21102
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=21102