Difference between revisions of "User:Boris Tsirelson/sandbox1"
From Encyclopedia of Mathematics
Line 1: | Line 1: | ||
− | + | ''Also: analytic measurable space'' | |
+ | [[:Category:Classical measure theory]] | ||
+ | {{User:Rehmann/sandbox/MSC|28A05|03E15,54H05}} | ||
− | + | $ \newcommand{\R}{\mathbb R} | |
− | + | \newcommand{\C}{\mathbb C} | |
− | + | \newcommand{\Om}{\Omega} | |
− | + | \newcommand{\A}{\mathcal A} | |
− | + | \newcommand{\B}{\mathcal B} | |
− | + | \newcommand{\P}{\mathbf P} $ | |
− | + | A [[measurable space|Borel space]] $(X,\A)$ is called '''analytic''' if it is countably separated and isomorphic to a quotient space of a standard Borel space. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 20:48, 23 January 2012
Also: analytic measurable space
Category:Classical measure theory
[ 2010 Mathematics Subject Classification MSN: 28A05,(03E15,54H05) | MSCwiki: 28A05 + 03E15,54H05 ]
$ \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb C} \newcommand{\Om}{\Omega} \newcommand{\A}{\mathcal A} \newcommand{\B}{\mathcal B} \newcommand{\P}{\mathbf P} $ A Borel space $(X,\A)$ is called analytic if it is countably separated and isomorphic to a quotient space of a standard Borel space.
How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=20001
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=20001