Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
Line 1: Line 1:
{{#if: abc | 123 | zyx }}
+
''Also: analytic measurable space''
  
 +
[[:Category:Classical measure theory]]
  
 +
{{User:Rehmann/sandbox/MSC|28A05|03E15,54H05}}
  
 
+
$ \newcommand{\R}{\mathbb R}
 
+
\newcommand{\C}{\mathbb C}
==Elementary==
+
\newcommand{\Om}{\Omega}
[[Absolute value]]
+
\newcommand{\A}{\mathcal A}
+ [[Additivity]]
+
\newcommand{\B}{\mathcal B}
+ [[Algebra]]
+
\newcommand{\P}{\mathbf P} $
+ [[Algebra, fundamental theorem of]]
+
A [[measurable space|Borel space]] $(X,\A)$ is called '''analytic''' if it is countably separated and isomorphic to a quotient space of a standard Borel space.
+ [[Algebra of sets]]
 
+ [[Analytic geometry]]
 
+ [[Antinomy]]
 
+ [[Arabic numerals]]
 
+ [[Arithmetic mean]]
 
+ [[Arithmetic root]]
 
+ [[Assertion]]
 
+ [[Associativity]]
 
+ [[Axiomatic method]]
 
+ [[Axonometry]]
 
 
 
[[Ball]]
 
+ [[Bayes formula]]
 
+ [[Bell inequalities]]
 
+ [[Benford law]]
 
+ [[Bernoulli experiment]]
 
+ [[Bernoulli random walk]]
 
+ [[Bertrand paradox]]
 
+ [[Binary tree]]
 
+ [[Binomial distribution]]
 
+ [[Bit]]
 

Revision as of 20:48, 23 January 2012

Also: analytic measurable space

Category:Classical measure theory

[ 2010 Mathematics Subject Classification MSN: 28A05,(03E15,54H05) | MSCwiki: 28A05   + 03E15,54H05  ]

$ \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb C} \newcommand{\Om}{\Omega} \newcommand{\A}{\mathcal A} \newcommand{\B}{\mathcal B} \newcommand{\P}{\mathbf P} $ A Borel space $(X,\A)$ is called analytic if it is countably separated and isomorphic to a quotient space of a standard Borel space.

How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=20001