Namespaces
Variants
Actions

Difference between revisions of "Hasse principle"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m
Line 1: Line 1:
One of the central principles of Diophantine geometry, which reduces the problem of the existence of rational points on an algebraic variety over a global field to the analogous problem over local fields.
+
One of the central principles of Diophantine geometry, which reduces
 +
the problem of the existence of rational points on an algebraic
 +
variety over a global field to the analogous problem over local
 +
fields.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466701.png" /> be a class of algebraic varieties over a global field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466702.png" />. The Hasse principle holds in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466703.png" /> if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466704.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466705.png" /> such that for all non-trivial absolute valuations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466706.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466707.png" /> the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466708.png" />-rational points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466709.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667010.png" /> is non-empty, the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667011.png" />-rational points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667012.png" /> is also not empty (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667013.png" /> is the completion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667014.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667015.png" />). In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667016.png" /> is the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667017.png" /> of rational numbers, then if the set of real points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667018.png" /> and the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667019.png" />-adic points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667020.png" />, for all primes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667021.png" />, are not empty, it follows that the set of rational points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667022.png" /> is also not empty. The Hasse principle holds for quadrics [[#References|[2]]], and so it is valid for algebraic curves of genus 0 (see [[#References|[3]]]). For quadrics over a number field the Hasse principle was stated and proved by H. Hasse in [[#References|[1]]]. For cubic hypersurfaces the Hasse principle is not true, in general (see [[#References|[3]]], [[#References|[4]]]); a counterexample (over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667023.png" />) is the projective curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667024.png" /> or the projective surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667025.png" />.
+
Let $M$ be a class of algebraic varieties over a global field $K$. The
 +
Hasse principle holds in $M$ if for any $X$ in $M$ such that for all
 +
non-trivial absolute valuations $\nu$ on $KK$ the set of $K_\nu$-rational
 +
points $X(K_\nu)$ of $X$ is non-empty, the set of $K$-rational points $X(K)$ is
 +
also not empty (where $K_\nu$ is the completion of $K$ relative to
 +
$\nu$). In particular, if $K$ is the field $\Q$ of rational numbers, then
 +
if the set of real points $X(\R)$ and the set of $p$-adic points $\Q_p$, for
 +
all primes $p$, are not empty, it follows that the set of rational
 +
points $X(\Q)$ is also not empty. The Hasse principle holds for quadrics
 +
[[#References|[2]]], and so it is valid for algebraic curves of genus
 +
0 (see
 +
[[#References|[3]]]). For quadrics over a number field the Hasse
 +
principle was stated and proved by H. Hasse in
 +
[[#References|[1]]]. For cubic hypersurfaces the Hasse principle is
 +
not true, in general (see
 +
[[#References|[3]]],
 +
[[#References|[4]]]); a counterexample (over $\Q$) is the projective
 +
curve $3x^3+4y^3+5z^3 = 0$ or the projective surface $5x^3+12y^3+9z^3+10t^3=0$.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667026.png" /> be an algebraic group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667027.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667028.png" /> be the class of algebraic varieties consisting of all principal homogeneous spaces over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667029.png" /> (see [[Galois cohomology|Galois cohomology]]; [[Weil–Châtelet group|Weil–Châtelet group]], and also [[#References|[2]]], [[#References|[3]]], [[#References|[5]]]). One says that the Hasse principle holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667030.png" /> if it holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667031.png" />. The Hasse principle holds for simply-connected and adjoint semi-simple algebraic groups over number fields ([[#References|[5]]], [[#References|[6]]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667032.png" /> is an Abelian variety, then the Hasse principle holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667033.png" /> if and only if the Shafarevich–Tate group (cf. [[Galois cohomology|Galois cohomology]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667034.png" /> vanishes (see the examples in [[#References|[7]]], [[#References|[8]]]).
+
Let $G$ be an algebraic group over $K$ and let $M(G)$ be the class of
 +
algebraic varieties consisting of all principal homogeneous spaces
 +
over $G$ (see
 +
[[Galois cohomology|Galois cohomology]];
 +
[[Weil–Châtelet group|Weil–Châtelet group]], and also
 +
[[#References|[2]]],
 +
[[#References|[3]]],
 +
[[#References|[5]]]). One says that the Hasse principle holds for $G$
 +
if it holds for $M(G)$. The Hasse principle holds for simply-connected
 +
and adjoint semi-simple algebraic groups over number fields
 +
([[#References|[5]]],
 +
[[#References|[6]]]). If $G$ is an Abelian variety, then the Hasse
 +
principle holds for $G$ if and only if the Shafarevich–Tate group (cf.
 +
[[Galois cohomology|Galois cohomology]]) of $G$ vanishes (see the
 +
examples in
 +
[[#References|[7]]],
 +
[[#References|[8]]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Hasse,   "Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper" ''J. Reine Angew. Math.'' , '''153''' (1924) pp. 113–130</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W.S. Cassels,   "Diophantine equations with special reference to elliptic curves" ''J. London Math. Soc.'' , '''41''' (1966) pp. 193–291</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> Yu.I. Manin,   "Cubic forms. Algebra, geometry, arithmetic" , North-Holland (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J.-P. Serre,   "Cohomologie Galoisienne" , Springer (1964)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> V. Chernusov,   "The Hasse principle for groups of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667035.png" />" , Minsk (1988) (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> K. Rubin,   "Tate–Shafarevich groups and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667036.png" />-functions of elliptic curves with complex multiplication" ''Invent. Math.'' , '''89''' (1987) pp. 527–560</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> V. Kolyvagin,   "The Mordell–Weil groups and the Shafarevich–Tate groups of Weil's elliptic curves" ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''52''' : 6 (1988)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD
 +
valign="top"> H. Hasse, "Darstellbarkeit von Zahlen durch quadratische
 +
Formen in einem beliebigen algebraischen Zahlkörper" ''J. Reine
 +
Angew. Math.'' , '''153''' (1924) pp. 113–130</TD></TR><TR><TD
 +
valign="top">[2]</TD> <TD valign="top"> J.W.S. Cassels (ed.)
 +
A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press
 +
(1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">
 +
J.W.S. Cassels, "Diophantine equations with special reference to
 +
elliptic curves" ''J. London Math. Soc.'' , '''41''' (1966)
 +
pp. 193–291</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">
 +
Yu.I. Manin, "Cubic forms. Algebra, geometry, arithmetic" ,
 +
North-Holland (1974) (Translated from Russian)</TD></TR><TR><TD
 +
valign="top">[5]</TD> <TD valign="top"> J.-P. Serre, "Cohomologie
 +
Galoisienne" , Springer (1964)</TD></TR><TR><TD valign="top">[6]</TD>
 +
<TD valign="top"> V. Chernusov, "The Hasse principle for groups of
 +
type $E_8$" , Minsk (1988) (In Russian)</TD></TR><TR><TD
 +
valign="top">[7]</TD> <TD valign="top"> K. Rubin, "Tate–Shafarevich
 +
groups and $L$-functions of elliptic curves with complex
 +
multiplication" ''Invent. Math.'' , '''89''' (1987)
 +
pp. 527–560</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">
 +
V. Kolyvagin, "The Mordell–Weil groups and the Shafarevich–Tate groups
 +
of Weil's elliptic curves" ''Izv. Akad. Nauk. SSSR Ser. Mat.'' ,
 +
'''52''' : 6 (1988)</TD></TR></table>

Revision as of 19:51, 14 September 2011

One of the central principles of Diophantine geometry, which reduces the problem of the existence of rational points on an algebraic variety over a global field to the analogous problem over local fields.

Let $M$ be a class of algebraic varieties over a global field $K$. The Hasse principle holds in $M$ if for any $X$ in $M$ such that for all non-trivial absolute valuations $\nu$ on $KK$ the set of $K_\nu$-rational points $X(K_\nu)$ of $X$ is non-empty, the set of $K$-rational points $X(K)$ is also not empty (where $K_\nu$ is the completion of $K$ relative to $\nu$). In particular, if $K$ is the field $\Q$ of rational numbers, then if the set of real points $X(\R)$ and the set of $p$-adic points $\Q_p$, for all primes $p$, are not empty, it follows that the set of rational points $X(\Q)$ is also not empty. The Hasse principle holds for quadrics [2], and so it is valid for algebraic curves of genus 0 (see [3]). For quadrics over a number field the Hasse principle was stated and proved by H. Hasse in [1]. For cubic hypersurfaces the Hasse principle is not true, in general (see [3], [4]); a counterexample (over $\Q$) is the projective curve $3x^3+4y^3+5z^3 = 0$ or the projective surface $5x^3+12y^3+9z^3+10t^3=0$.

Let $G$ be an algebraic group over $K$ and let $M(G)$ be the class of algebraic varieties consisting of all principal homogeneous spaces over $G$ (see Galois cohomology; Weil–Châtelet group, and also [2], [3], [5]). One says that the Hasse principle holds for $G$ if it holds for $M(G)$. The Hasse principle holds for simply-connected and adjoint semi-simple algebraic groups over number fields ([5], [6]). If $G$ is an Abelian variety, then the Hasse principle holds for $G$ if and only if the Shafarevich–Tate group (cf. Galois cohomology) of $G$ vanishes (see the examples in [7], [8]).

References

[1] H. Hasse, "Darstellbarkeit von Zahlen durch quadratische

Formen in einem beliebigen algebraischen Zahlkörper" J. Reine

Angew. Math. , 153 (1924) pp. 113–130
[2] J.W.S. Cassels (ed.)

A. Fröhlich (ed.) , Algebraic number theory , Acad. Press

(1967)
[3]

J.W.S. Cassels, "Diophantine equations with special reference to elliptic curves" J. London Math. Soc. , 41 (1966)

pp. 193–291
[4]

Yu.I. Manin, "Cubic forms. Algebra, geometry, arithmetic" ,

North-Holland (1974) (Translated from Russian)
[5] J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964)
[6] V. Chernusov, "The Hasse principle for groups of type $E_8$" , Minsk (1988) (In Russian)
[7] K. Rubin, "Tate–Shafarevich

groups and $L$-functions of elliptic curves with complex multiplication" Invent. Math. , 89 (1987)

pp. 527–560
[8]

V. Kolyvagin, "The Mordell–Weil groups and the Shafarevich–Tate groups of Weil's elliptic curves" Izv. Akad. Nauk. SSSR Ser. Mat. ,

52 : 6 (1988)
How to Cite This Entry:
Hasse principle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hasse_principle&oldid=18794
This article was adapted from an original article by Yu.G. Zarkhin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article