|
|
Line 1: |
Line 1: |
− | A group scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c0234001.png" /> over a basis scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c0234002.png" />, the value of which on any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c0234003.png" />-scheme is an Abelian group. Examples of commutative group schemes are Abelian schemes and algebraic tori (cf. [[Algebraic torus|Algebraic torus]]; [[Abelian scheme|Abelian scheme]]). A generalization of algebraic tori in the framework of the theory of group schemes is the following notion. A commutative group scheme is said to be a group scheme of multiplicative type if for any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c0234004.png" /> there is an open neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c0234005.png" /> and and an absolutely-flat quasi-compact morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c0234006.png" /> such that the commutative group scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c0234007.png" /> is diagonalizable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c0234008.png" />. Here, a diagonalizable group scheme is a group scheme of the form | + | A group scheme $G$ over a basis scheme $S$, the value of which on any |
| + | $S$-scheme is an Abelian group. Examples of commutative group schemes |
| + | are Abelian schemes and algebraic tori (cf. |
| + | [[Algebraic torus|Algebraic torus]]; |
| + | [[Abelian scheme|Abelian scheme]]). A generalization of algebraic tori |
| + | in the framework of the theory of group schemes is the following |
| + | notion. A commutative group scheme is said to be a group scheme of |
| + | multiplicative type if for any point $s\in S$ there is an open |
| + | neighbourhood $U\ni s$ and and an absolutely-flat quasi-compact morphism |
| + | $f:U_1\to U$ such that the commutative group scheme $G_1=G\times_U U_1$ is diagonalizable over |
| + | $U_1$. Here, a diagonalizable group scheme is a group scheme of the form |
| + | $$D_S(M) = {\rm Spec}({\mathcal O}_S(M))$$ |
| + | where $M$ is an Abelian group and ${\mathcal O}_S(M)$ is its group algebra with |
| + | coefficients in the structure sheaf ${\mathcal O}_S$ of the scheme $S$. In the case |
| + | when $S$ is the spectrum of an algebraically closed field, this notion |
| + | reduces to that of a diagonalizable group. If $M={\mathbb Z}$ is the additive |
| + | group of integers, then $D_S(M)$ coincides with the multiplicative group |
| + | scheme $G_{m,S}$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c0234009.png" /></td> </tr></table>
| + | Let $G$ be a group scheme over $S$ whose fibre over the point $s\in S$ is a |
| + | group scheme of multiplicative type over the residue class field |
| + | $k(s)$. Then there is a neighbourhood $U$ of $s$ such that $G\times_S U$ is a group |
| + | scheme of multiplicative type over $U$ (Grothendieck's rigidity |
| + | theorem). |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340010.png" /> is an Abelian group and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340011.png" /> is its group algebra with coefficients in the structure sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340012.png" /> of the scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340013.png" />. In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340014.png" /> is the spectrum of an algebraically closed field, this notion reduces to that of a diagonalizable group. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340015.png" /> is the additive group of integers, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340016.png" /> coincides with the multiplicative group scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340017.png" />.
| + | The structure of commutative group schemes has been studied in the |
− | | + | case when the basis scheme $S$ is the spectrum of a field $k$, and the |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340018.png" /> be a group scheme over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340019.png" /> whose fibre over the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340020.png" /> is a group scheme of multiplicative type over the residue class field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340021.png" />. Then there is a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340022.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340023.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340024.png" /> is a group scheme of multiplicative type over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340025.png" /> (Grothendieck's rigidity theorem).
| + | commutative group scheme $G$ is of finite type over $k$. In this case |
− | | + | the commutative group scheme contains a maximal invariant affine group |
− | The structure of commutative group schemes has been studied in the case when the basis scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340026.png" /> is the spectrum of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340027.png" />, and the commutative group scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340028.png" /> is of finite type over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340029.png" />. In this case the commutative group scheme contains a maximal invariant affine group subscheme, the quotient with respect to which is an Abelian variety (a structure theorem of Chevalley). Any affine commutative group scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340030.png" /> of such a type has a maximal invariant group subscheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340031.png" /> of multiplicative type, the quotient with respect to which is a unipotent group. If the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340032.png" /> is perfect, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340033.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340034.png" /> is a maximal unipotent subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340035.png" />. | + | subscheme, the quotient with respect to which is an Abelian variety (a |
| + | structure theorem of Chevalley). Any affine commutative group scheme |
| + | $G$ of such a type has a maximal invariant group subscheme $G_m$ of |
| + | multiplicative type, the quotient with respect to which is a unipotent |
| + | group. If the field $k$ is perfect, then $G\cong G^m\times G^n$, where $G^n$ is a maximal |
| + | unipotent subgroup of $G$. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.-P. Serre, "Groupes algébrique et corps des classes" , Hermann (1959)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Demazure, A. Grothendieck, "Schémas en groupes II" , ''Lect. notes in math.'' , '''152''' , Springer (1970)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Demazure, P. Gabriel, "Groupes algébriques" , '''1''' , Masson (1970)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F. Oort, "Commutative group schemes" , ''Lect. notes in math.'' , '''15''' , Springer (1966)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> W. Waterhouse, "Introduction to affine group schemes" , Springer (1979)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD |
| + | valign="top"> J.-P. Serre, "Groupes algébrique et corps des classes" , |
| + | Hermann (1959)</TD></TR><TR><TD valign="top">[2]</TD> <TD |
| + | valign="top"> M. Demazure, A. Grothendieck, "Schémas en groupes II" , |
| + | ''Lect. notes in math.'' , '''152''' , Springer |
| + | (1970)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> |
| + | M. Demazure, P. Gabriel, "Groupes algébriques" , '''1''' , Masson |
| + | (1970)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> |
| + | F. Oort, "Commutative group schemes" , ''Lect. notes in math.'' , |
| + | '''15''' , Springer (1966)</TD></TR><TR><TD valign="top">[5]</TD> <TD |
| + | valign="top"> W. Waterhouse, "Introduction to affine group schemes" , |
| + | Springer (1979)</TD></TR></table> |
| | | |
| | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | A group scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340036.png" /> over a scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340037.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340038.png" />-scheme such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340039.png" /> is a group for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340040.png" />-scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340041.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340042.png" /> is an Abelian, or commutative, group for all such <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340043.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340044.png" /> is called a commutative group scheme. | + | A group scheme $G$ over a scheme $S$ is an $S$-scheme |
| + | such that $G(T)$ is a group for any $S$-scheme $T$. If $G(T)$ is an Abelian, |
| + | or commutative, group for all such $T$, then $G$ is called a |
| + | commutative group scheme. |
| | | |
− | The multiplicative group scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340045.png" /> takes the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340046.png" />, the group of invertible elements of the ring of functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340047.png" /> for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340048.png" />-scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340049.png" />. The additive group scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340050.png" /> takes the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340051.png" />, the underlying additive group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340052.png" />. A group scheme over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340053.png" /> can equivalently be defined as a group object in the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023400/c02340054.png" />-schemes. | + | The multiplicative group scheme $G_{m,S}$ takes the value $\Gamma(T,{\mathcal O}_T)^*$, the group of |
| + | invertible elements of the ring of functions on $T$ for each |
| + | $S$-scheme $T$. The additive group scheme $G_{\alpha,S}$ takes the values $G_{\alpha,S}(t) = \Gamma(T,{\mathcal O}_T)^+$, |
| + | the underlying additive group of $\Gamma(T,{\mathcal O}_T)$. A group scheme over $S$ can |
| + | equivalently be defined as a group object in the category of |
| + | $S$-schemes. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.-P. Serre, "Groupes algébrique et corps des classes" , Hermann (1959)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD |
| + | valign="top"> J.-P. Serre, "Groupes algébrique et corps des classes" , |
| + | Hermann (1959)</TD></TR></table> |
A group scheme $G$ over a basis scheme $S$, the value of which on any
$S$-scheme is an Abelian group. Examples of commutative group schemes
are Abelian schemes and algebraic tori (cf.
Algebraic torus;
Abelian scheme). A generalization of algebraic tori
in the framework of the theory of group schemes is the following
notion. A commutative group scheme is said to be a group scheme of
multiplicative type if for any point $s\in S$ there is an open
neighbourhood $U\ni s$ and and an absolutely-flat quasi-compact morphism
$f:U_1\to U$ such that the commutative group scheme $G_1=G\times_U U_1$ is diagonalizable over
$U_1$. Here, a diagonalizable group scheme is a group scheme of the form
$$D_S(M) = {\rm Spec}({\mathcal O}_S(M))$$
where $M$ is an Abelian group and ${\mathcal O}_S(M)$ is its group algebra with
coefficients in the structure sheaf ${\mathcal O}_S$ of the scheme $S$. In the case
when $S$ is the spectrum of an algebraically closed field, this notion
reduces to that of a diagonalizable group. If $M={\mathbb Z}$ is the additive
group of integers, then $D_S(M)$ coincides with the multiplicative group
scheme $G_{m,S}$.
Let $G$ be a group scheme over $S$ whose fibre over the point $s\in S$ is a
group scheme of multiplicative type over the residue class field
$k(s)$. Then there is a neighbourhood $U$ of $s$ such that $G\times_S U$ is a group
scheme of multiplicative type over $U$ (Grothendieck's rigidity
theorem).
The structure of commutative group schemes has been studied in the
case when the basis scheme $S$ is the spectrum of a field $k$, and the
commutative group scheme $G$ is of finite type over $k$. In this case
the commutative group scheme contains a maximal invariant affine group
subscheme, the quotient with respect to which is an Abelian variety (a
structure theorem of Chevalley). Any affine commutative group scheme
$G$ of such a type has a maximal invariant group subscheme $G_m$ of
multiplicative type, the quotient with respect to which is a unipotent
group. If the field $k$ is perfect, then $G\cong G^m\times G^n$, where $G^n$ is a maximal
unipotent subgroup of $G$.
References
[1] | J.-P. Serre, "Groupes algébrique et corps des classes" ,
Hermann (1959) |
[2] | M. Demazure, A. Grothendieck, "Schémas en groupes II" ,
Lect. notes in math. , 152 , Springer
(1970) |
[3] |
M. Demazure, P. Gabriel, "Groupes algébriques" , 1 , Masson
(1970) |
[4] |
F. Oort, "Commutative group schemes" , Lect. notes in math. ,
15 , Springer (1966) |
[5] | W. Waterhouse, "Introduction to affine group schemes" ,
Springer (1979) |
A group scheme $G$ over a scheme $S$ is an $S$-scheme
such that $G(T)$ is a group for any $S$-scheme $T$. If $G(T)$ is an Abelian,
or commutative, group for all such $T$, then $G$ is called a
commutative group scheme.
The multiplicative group scheme $G_{m,S}$ takes the value $\Gamma(T,{\mathcal O}_T)^*$, the group of
invertible elements of the ring of functions on $T$ for each
$S$-scheme $T$. The additive group scheme $G_{\alpha,S}$ takes the values $G_{\alpha,S}(t) = \Gamma(T,{\mathcal O}_T)^+$,
the underlying additive group of $\Gamma(T,{\mathcal O}_T)$. A group scheme over $S$ can
equivalently be defined as a group object in the category of
$S$-schemes.
References
[a1] | J.-P. Serre, "Groupes algébrique et corps des classes" ,
Hermann (1959) |