Namespaces
Variants
Actions

Difference between revisions of "Tamagawa number"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
Line 1: Line 1:
The volume of a homogeneous space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t0920601.png" /> associated with the group of adèles (cf. [[Adèle|Adèle]]) of a connected [[Linear algebraic group|linear algebraic group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t0920602.png" /> defined over a global field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t0920603.png" /> with respect to the [[Tamagawa measure|Tamagawa measure]]. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t0920604.png" /> is the subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t0920605.png" /> consisting of those adèles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t0920606.png" /> for which
+
The volume of a homogeneous space <math>
 +
G_A^{(1)}/G_K
 +
</math> associated with the group of adèles (cf. [[Adèle|Adèle]]) of a connected [[Linear algebraic group|linear algebraic group]] <math>
 +
G
 +
</math> defined over a global field <math>
 +
K
 +
</math> with respect to the [[Tamagawa measure|Tamagawa measure]]. Here <math>
 +
G_A^{(1)}/G_K
 +
</math> is the subgroup of <math>
 +
G_A
 +
</math> consisting of those adèles <math>
 +
g = (g_\nu)_{\nu\in V} \in G_A
 +
</math> for which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t0920607.png" /></td> </tr></table>
+
<center><math>
 +
\prod_{\nu \in V} | \chi(g_\nu)|_\nu = 1
 +
</math></center>
  
for any character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t0920608.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t0920609.png" /> which is defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206010.png" /> (the product is taken with respect to all valuations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206011.png" /> in the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206012.png" /> of normalized valuations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206013.png" />). The finiteness of the Tamagawa number follows from reduction theory (see [[#References|[5]]]).
+
for any character <math>
 +
\chi
 +
</math> of <math>
 +
G
 +
</math> which is defined over <math>
 +
K
 +
</math> (the product is taken with respect to all valuations <math>
 +
\nu
 +
</math> in the set <math>
 +
V
 +
</math> of normalized valuations of <math>
 +
K
 +
</math>). The finiteness of the Tamagawa number follows from reduction theory (see [[#References|[5]]]).
  
When describing the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206014.png" /> it is convenient to distinguish the cases of unipotent groups, algebraic tori and semi-simple groups. For unipotent groups the Tamagawa number is always equal to 1. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206015.png" /> is an algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206016.png" />-torus, then
+
When describing the values of <math>
 +
\tau(G)
 +
</math> it is convenient to distinguish the cases of unipotent groups, algebraic tori and semi-simple groups. For unipotent groups the Tamagawa number is always equal to 1. If <math>
 +
T
 +
</math> is an algebraic <math>
 +
K
 +
</math>-torus, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206017.png" /></td> </tr></table>
+
<center><math>
 +
\tau(T) = { { [H^1(K,\hat T)] }\over{[{\rm Shaf}(T)] } }
 +
</math></center>
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206019.png" /> are the order of the one-dimensional Galois cohomology group of the module of rational characters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206020.png" /> of the torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206021.png" /> and the order of its Shafarevich–Tate group, respectively. On the basis of this formula an example was constructed of a torus for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206022.png" /> is not an integer [[#References|[8]]]. The determination of the Tamagawa number of a semi-simple group over a number field can be reduced to the case of a simply-connected group [[#References|[9]]]: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206023.png" /> be a semi-simple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206024.png" />-group, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206025.png" /> be the universal covering which is defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206026.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206027.png" /> be the fundamental group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206028.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206029.png" /> be its character group; then
+
where <math>
 +
[H^1(K,\hat T)]
 +
</math> and <math>
 +
[{\rm Shaf}(T)]
 +
</math> are the order of the one-dimensional Galois cohomology group of the module of rational characters <math>
 +
\hat T
 +
</math> of the torus <math>
 +
T
 +
</math> and the order of its Shafarevich Tate group, respectively. On the basis of this formula an example was constructed of a torus for which <math>
 +
\tau(T)
 +
</math> is not an integer [[#References|[8]]]. The determination of the Tamagawa number of a semi-simple group over a number field can be reduced to the case of a simply-connected group [[#References|[9]]]: Let <math>
 +
G
 +
</math> be a semi-simple <math>
 +
K
 +
</math>-group, let <math>
 +
\pi : \hat G \to G
 +
</math> be the universal covering which is defined over <math>
 +
K
 +
</math>, let <math>
 +
F = {\rm Ker}\; \pi
 +
</math> be the fundamental group of <math>
 +
G
 +
</math>, and let <math>
 +
\hat F
 +
</math> be its character group; then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206030.png" /></td> </tr></table>
+
<center><math>
 
+
\tau(G) = \tau(\hat G) { {h^0(\hat F) }\over{i^1(\hat F)}},
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206031.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206032.png" /> is the order of the kernel of the canonical mapping
+
</math></center>
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206033.png" /></td> </tr></table>
 
  
 +
where <math>
 +
h^0(\hat F) = [H^0(K,F)]
 +
</math>, and <math>
 +
i^1(\hat F)
 +
</math> is the order of the kernel of the canonical mapping
 +
<center><math>
 +
H^1(K,\hat F) \to \prod_{\nu\in V} H^1(K_\nu,\hat F).
 +
</math></center>
 
It is the conjectured that for all simply-connected groups the Tamagawa number is equal to 1 (the Weil conjecture). This was proved for most types of simple groups over number fields ([[#References|[3]]], [[#References|[4]]], [[#References|[7]]]), and also for Chevalley groups over number fields (see [[#References|[2]]]) and over global function fields [[#References|[6]]].
 
It is the conjectured that for all simply-connected groups the Tamagawa number is equal to 1 (the Weil conjecture). This was proved for most types of simple groups over number fields ([[#References|[3]]], [[#References|[4]]], [[#References|[7]]]), and also for Chevalley groups over number fields (see [[#References|[2]]]) and over global function fields [[#References|[6]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.W.S. Cassels (ed.)  A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press  (1986)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> , ''Arithmetic groups and automorphic functions'' , Moscow  (1969)  (In Russian; translated from English and French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Weil,  "Sur certaines groupes d'opérateurs unitaires"  ''Acta Math.'' , '''111'''  (1964)  pp. 143–211</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A. Weil,  "Sur la formule de Siegel dans la théorie des groupes classiques"  ''Acta Math.'' , '''113'''  (1965)  pp. 1–87</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  V.P. Platonov,  "The arithmetic theory of algebraic groups"  ''Russian Math. Surveys'' , '''37''' :  3  (1982)  pp. 1–62 ''Uspekhi Mat. Nauk'' , '''37''' :  3  (1982)  pp. 3–54</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  G. Harder,  "Chevalley groups over function fields and automorphic forms"  ''Ann. of Math.'' , '''100'''  (1974)  pp. 249–306</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  J.G.M. Mars,  "The Tamagawa number of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206034.png" />"  ''Ann. of Math.'' , '''89'''  (1969)  pp. 557–574</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  T. Ono,  "On the Tamagawa number of algebraic tori"  ''Ann. of Math.'' , '''78'''  (1963)  pp. 47–73</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  T. Ono,  "On the relative theory of Tamagawa numbers"  ''Ann. of Math.'' , '''82'''  (1965)  pp. 88–111</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.W.S. Cassels (ed.)  A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press  (1986)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> , ''Arithmetic groups and automorphic functions'' , Moscow  (1969)  (In Russian; translated from English and French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Weil,  "Sur certaines groupes d'opérateurs unitaires"  ''Acta Math.'' , '''111'''  (1964)  pp. 143 211</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A. Weil,  "Sur la formule de Siegel dans la théorie des groupes classiques"  ''Acta Math.'' , '''113'''  (1965)  pp. 1 87</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  V.P. Platonov,  "The arithmetic theory of algebraic groups"  ''Russian Math. Surveys'' , '''37''' :  3  (1982)  pp. 1 62 ''Uspekhi Mat. Nauk'' , '''37''' :  3  (1982)  pp. 3 54</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  G. Harder,  "Chevalley groups over function fields and automorphic forms"  ''Ann. of Math.'' , '''100'''  (1974)  pp. 249 306</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  J.G.M. Mars,  "The Tamagawa number of <math>
 +
{}^2A_n
 +
</math>"  ''Ann. of Math.'' , '''89'''  (1969)  pp. 557 574</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  T. Ono,  "On the Tamagawa number of algebraic tori"  ''Ann. of Math.'' , '''78'''  (1963)  pp. 47 73</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  T. Ono,  "On the relative theory of Tamagawa numbers"  ''Ann. of Math.'' , '''82'''  (1965)  pp. 88 111</TD></TR></table>
  
  
  
 
====Comments====
 
====Comments====
The Shafarevich–Tate group is also called Tate–Shafarevich group; cf. [[Galois cohomology|Galois cohomology]] for its definition.
+
The Shafarevich Tate group is also called Tate Shafarevich group; cf. [[Galois cohomology|Galois cohomology]] for its definition.
  
For the relation between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092060/t09206036.png" /> see [[#References|[a1]]].
+
For the relation between <math>
 +
\tau(G)
 +
</math> and <math>
 +
\tau(\hat G)
 +
</math> see [[#References|[a1]]].
  
 
Weil's conjecture has been proved by R. Kottwitz [[#References|[a2]]] for number fields, modulo the validity of the [[Hasse principle|Hasse principle]]. (The latter has also been established.)
 
Weil's conjecture has been proved by R. Kottwitz [[#References|[a2]]] for number fields, modulo the validity of the [[Hasse principle|Hasse principle]]. (The latter has also been established.)
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.E. Kottwitz,  "Stable trace formula: cuspidal tempered terms"  ''Duke Math. J.'' , '''51'''  (1984)  pp. 611–650</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R.E. Kottwitz,  "Tamagawa numbers"  ''Ann. of Math.'' , '''127'''  (1988)  pp. 629–646</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.E. Kottwitz,  "Stable trace formula: cuspidal tempered terms"  ''Duke Math. J.'' , '''51'''  (1984)  pp. 611 650</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R.E. Kottwitz,  "Tamagawa numbers"  ''Ann. of Math.'' , '''127'''  (1988)  pp. 629 646</TD></TR></table>

Revision as of 21:40, 21 June 2011

The volume of a homogeneous space \( G_A^{(1)}/G_K \) associated with the group of adèles (cf. Adèle) of a connected linear algebraic group \( G \) defined over a global field \( K \) with respect to the Tamagawa measure. Here \( G_A^{(1)}/G_K \) is the subgroup of \( G_A \) consisting of those adèles \( g = (g_\nu)_{\nu\in V} \in G_A \) for which

\( \prod_{\nu \in V} | \chi(g_\nu)|_\nu = 1 \)

for any character \( \chi \) of \( G \) which is defined over \( K \) (the product is taken with respect to all valuations \( \nu \) in the set \( V \) of normalized valuations of \( K \)). The finiteness of the Tamagawa number follows from reduction theory (see [5]).

When describing the values of \( \tau(G) \) it is convenient to distinguish the cases of unipotent groups, algebraic tori and semi-simple groups. For unipotent groups the Tamagawa number is always equal to 1. If \( T \) is an algebraic \( K \)-torus, then

\( \tau(T) = { { [H^1(K,\hat T)] }\over{[{\rm Shaf}(T)] } } \)

where \( [H^1(K,\hat T)] \) and \( [{\rm Shaf}(T)] \) are the order of the one-dimensional Galois cohomology group of the module of rational characters \( \hat T \) of the torus \( T \) and the order of its Shafarevich Tate group, respectively. On the basis of this formula an example was constructed of a torus for which \( \tau(T) \) is not an integer [8]. The determination of the Tamagawa number of a semi-simple group over a number field can be reduced to the case of a simply-connected group [9]: Let \( G \) be a semi-simple \( K \)-group, let \( \pi : \hat G \to G \) be the universal covering which is defined over \( K \), let \( F = {\rm Ker}\; \pi \) be the fundamental group of \( G \), and let \( \hat F \) be its character group; then

\( \tau(G) = \tau(\hat G) { {h^0(\hat F) }\over{i^1(\hat F)}}, \)

where \( h^0(\hat F) = [H^0(K,F)] \), and \( i^1(\hat F) \) is the order of the kernel of the canonical mapping

\( H^1(K,\hat F) \to \prod_{\nu\in V} H^1(K_\nu,\hat F). \)

It is the conjectured that for all simply-connected groups the Tamagawa number is equal to 1 (the Weil conjecture). This was proved for most types of simple groups over number fields ([3], [4], [7]), and also for Chevalley groups over number fields (see [2]) and over global function fields [6].

References

[1] J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1986)
[2] , Arithmetic groups and automorphic functions , Moscow (1969) (In Russian; translated from English and French)
[3] A. Weil, "Sur certaines groupes d'opérateurs unitaires" Acta Math. , 111 (1964) pp. 143 211
[4] A. Weil, "Sur la formule de Siegel dans la théorie des groupes classiques" Acta Math. , 113 (1965) pp. 1 87
[5] V.P. Platonov, "The arithmetic theory of algebraic groups" Russian Math. Surveys , 37 : 3 (1982) pp. 1 62 Uspekhi Mat. Nauk , 37 : 3 (1982) pp. 3 54
[6] G. Harder, "Chevalley groups over function fields and automorphic forms" Ann. of Math. , 100 (1974) pp. 249 306
[7] J.G.M. Mars, "The Tamagawa number of \( {}^2A_n \)" Ann. of Math. , 89 (1969) pp. 557 574
[8] T. Ono, "On the Tamagawa number of algebraic tori" Ann. of Math. , 78 (1963) pp. 47 73
[9] T. Ono, "On the relative theory of Tamagawa numbers" Ann. of Math. , 82 (1965) pp. 88 111


Comments

The Shafarevich Tate group is also called Tate Shafarevich group; cf. Galois cohomology for its definition.

For the relation between \( \tau(G) \) and \( \tau(\hat G) \) see [a1].

Weil's conjecture has been proved by R. Kottwitz [a2] for number fields, modulo the validity of the Hasse principle. (The latter has also been established.)

References

[a1] R.E. Kottwitz, "Stable trace formula: cuspidal tempered terms" Duke Math. J. , 51 (1984) pp. 611 650
[a2] R.E. Kottwitz, "Tamagawa numbers" Ann. of Math. , 127 (1988) pp. 629 646
How to Cite This Entry:
Tamagawa number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tamagawa_number&oldid=13490
This article was adapted from an original article by A.S. Rapinchuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article