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1 Introduction
In this article we consider the general linear model (Gauss—Markov model)
y =XB+e¢, orinshort . Z = {y, X3, 0>V},

where X is a known n X p model matrix, the vector y is an observable n-
dimensional random vector, 3 is a p x 1 vector of unknown parameters, and
€ is an unobservable vector of random errors with expectation E(e) = 0, and
covariance matrix cov(e) = 02V, where 02 > 0 is an unknown constant. The
nonnegative definite (possibly singular) matrix V is known. In our considera-
tions o has no role and hence we may put o2 = 1.

As regards the notation, we will use the symbols A/, A=, At € (A), €(A)*,
and A4 (A) to denote, respectively, the transpose, a generalized inverse, the
Moore—Penrose inverse, the column space, the orthogonal complement of the
column space, and the null space, of the matrix A. By (A : B) we denote
the partitioned matrix with A and B as submatrices. By A1 we denote any
matrix satisfying €' (A1) = A4 (A’) = €(A)L. Furthermore, we will write Pa =
AAT = A(A’A)" A’ to denote the orthogonal projector (with respect to the
standard inner product) onto %’(A). In particular, we denote H = Px and
M =1,, — H. One choice for X is of course the projector M.
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Let K'3 be a given vector of parametric functions specified by K’ € R9*P,
Our object is to find a (homogeneous) linear estimator Ay which would provide
an unbiased and in some sense “best” estimator for K’@ under the model .Z.
However, not all parametric functions have linear unbiased estimators; those
which have are called estimable parametric functions, and then there exists a
matrix A such that

E(Ay) = AXB=K'B for all 8 € RP.

Hence K’3 is estimable if and only if there exists a matrix A such that K’ =
AX ie, €K) C€X).

The ordinary least squares estimator of K’3 is defined as OLSE(K'3) = K'3,
where B is any solution to the normal equation X' X,@' = X'y; hence B = /3'
minimizes (y — X8)'(y — X8) and it can be expressed as 3 = (X’X)~ X'y,
while X3 = Hy. Now the condition € (K) C % (X’) guarantees that K’ is
unique, even though B may not be unique.

2 The Best Linear Unbiased Estimator (BLUE)

The expectation X3 is trivially estimable and Gy is unbiased for X3 whenever
GX = X. An unbiased linear estimator Gy for X3 is defined to be the best
linear unbiased estimator, BLUE, for X3 under . if

cov(Gy) <p, cov(Ly) for all L: LX =X,

where “<p” refers to the Lowner partial ordering. In other words, Gy has
the smallest covariance matrix (in the Lowner sense) among all linear unbiased
estimators. We denote the BLUE of X3 as BLUE(X3) = XA3. If X has full
column rank, then 3 is estimable and an unbiased estimator Ay is the BLUE
for B if AVA’ <;, BVB’ for all B such that BX = I,. The Léwner ordering is
a very strong ordering implying for example

Var(Bi) SV&I‘(B;(), i:17"'5p7

trace[cov(83)] < trace[cov(B™)], det[cov(3)] < det[cov(8™)],

for any linear unbiased estimator 3* of 3; here var refers to the variance and
“det” denotes the determinant.

The following theorem gives the “Fundamental BLUE equation”; see, e.g.,
Rao (1967), Zyskind (1967) and Puntanen, Styan and Werner (2000).

Theorem 1. Consider the general linear model 4 = {y, X3, V}. Then the
estimator Gy is the BLUE for X3 if and only if G satisfies the equation

G(X:VXH) = (X:0). (1)

The corresponding condition for Ay to be the BLUE of an estimable parametric
function K'B is A(X : VX+) = (K’ : 0).



It is sometimes convenient to express (1) in the following form, see Rao
(1971).

Theorem 2 (Pandora’s Box). Consider the general linear model 4 = {y, X3, V}.
Then the estimator Gy is the BLUE for X8 if and only if there exists a matriz
L € RP*™ 50 that G is a solution to

vV X\ /GY\ [0
& 0)(5)-(x)

The equation (1) has a unique solution for G if and only if €(X : V) = R™.
Notice that under .# we assume that the observed value of y belongs to the
subspace %' (X : V) with probability 1; this is the consistency condition of the
linear model, see, e.g., Baksalary, Rao and Markiewicz (1992). The consistency
condition means, for example, that whenever we have some statements which
involve the random vector y, these statements need hold only for those values
of y that belong to ¥ (X : V). The general solution for G can be expressed, for
example, in the following ways:

G, =X(X'W X)"X'W~ +F (I, - WW"),
G, =H - HVM(MVM) M + F,[I, - MVM(MVM)~ M,

where F; and F5 are arbitrary matrices, W = V+XUX'’ and U is any arbitrary
conformable matrix such that €(W) = (X : V). Notice that even though G
may not be unique, the numerical value of Gy is unique because y € €(X : V).
If V is positive definite, then BLUE(X3) = X(X'V~1X)~"X'V~ly. Clearly
OLSE(X/3) = Hy is the BLUE under {y, X8, 0I}. It is also worth noting that
the matrix G satisfying (1) can be interpreted as a projector: it is a projector
onto €' (X) along €(VX™1), see Rao (1974).

3 OLSE vs. BLUE

Characterizing the equality of the Ordinary Least Squares Estimator (OLSE)
and the BLUE has received a lot of attention in the literature, since Anderson
(1948), but the major breakthroughs were made by Rao (1967) and Zyskind
(1967); for a detailed review, see Puntanen and Styan (1989). For some further
references from those years we may mention Kruskal (1968), Watson (1967),
and Zyskind and Martin (1969).

We present below six characterizations for the OLSE and the BLUE to be
equal (with probability 1).

Theorem 3 (OLSE vs. BLUE). Consider the general linear model 4 =
{y, X8, V}. Then OLSE(X3) = BLUE(X() if and only if any one of the fol-
lowing siz equivalent conditions holds. (Note: V may be replaced by its Moore—



Penrose inverse VT and H and M = 1,, — H may be interchanged.)

1)HV = VH,
2) HVM =0,
3) ¢(VH) C ¢(H),

€ (V
€ (X) has a basis comprising r = rank(X) orthonormal eigenvectors of V,
V =HAH + MBM for some A and B,

= al, + HKH + MLM for some o € R, and K and L.

(1)
(2)
(3)
(4)
(5)
(6) vV

Theorem 3 shows at once that under {y, X3, I,,} the OLSE of X is trivially
the BLUE; this result is often called the Gauss—Markov Theorem.

4 Two Linear Models

Consider now two linear models .#1 = {y, X3, V1} and #> = {y, X3, Va},
which differ only in their covariance matrices. For the proof of the following
proposition and related discussion, see, e.g., Rao (1971, Th. 5.2, Th. 5.5), and
Mitra and Moore (1973, Th. 3.3, Th. 4.1-4.2).

Theorem 4. Consider the linear models #1 = {y, X8, V1} and 4> = {y, X3, Va},
and let the notation {BLUE(X3 | .#1)} C {BLUE(X | .#>)} mean that every
representation of the BLUE for X3 under .#1 remains the BLUE for X3 under

M. Then the following statements are equivalent:

(1) {BLUE(XB | #1)} C {BLUE(X | #2)},

(2) (VzXL) C E(V1XH),

(3) Vo =V + XN ;X' + VIMN2MVy, for some Ny and Ny,
(4) Vg = XN3X'+ VIMN, MV, for some N3 and Nj.

Notice that obviously
{BLUE(XB | #1)} = {BLUE(XB | #-)} <= € (VX)) =% (V:X1).

For the equality between the BLUEs of X;3; under two partitioned models, see
Haslett and Puntanen (2010a).

5 Model with New Observations: Best Linear
Unbiased Predictor (BLUP)

Consider the model .# = {y, X3, V}, and let y; denote an m x 1 unobservable
random vector containing new observations. The new observations are assumed
to follow the linear model y; = X3 + €, where Xy is a known m x p model
matrix associated with new observations, 3 is the same vector of unknown
parameters as in .#, and € is an m x 1 random error vector associated with



new observations. Our goal is to predict the random vector y; on the basis of
y. The expectation and the covariance matrix are

y\_ (X8 y\_ (V=Vu Vp
E()"]‘)(Xfﬁ)7 COV(Yf)( Vo Vgg)’

which we may write as

() () (. W)

A linear predictor Ay is said to be unbiased for y; if E(Ay) = E(ys) = X8
for all 3 € R?. Then the random vector y is said to be unbiasedly predictable.
Now an unbiased linear predictor Ay is the best linear unbiased predictor,
BLUP, for y; if the Léwner ordering

cov(Ay —ys) <p cov(By —yy)

holds for all B such that By is an unbiased linear predictor for y;.
The following theorem characterizes the BLUP; see, e.g., Christensen (2002,
p. 283), and Isotalo and Puntanen (2006, p. 1015).

Theorem 5 (Fundamental BLUP equation). Consider the linear model 4,
where X3 is a given estimable parametric function. Then the linear estimator
Ay is the best linear unbiased predictor (BLUP) fory¢ if and only if A satisfies
the equation

A(X: VXH) = (X : Vg XH).

In terms of Pandora’s Box (Theorem 2), Ay is the BLUP for y; if and only if
there exists a matriz L such that A satisfies the equation

vV X\ (A" (Vi
X 0 L) X} '
6 The Mixed Model
A mixed linear model can be presented as

y=XB+Zy+e, orshortly Mmix={y, X8+ Zv, D, R},

where X € R"*P and Z € R"™*? are known matrices, 8 € RP is a vector
of unknown fixed effects, v is an unobservable vector (¢ elements) of random
effects with cov(vy,e) = 04x, and

E(y) =0, cov(y) = Dgxq, E(€) =0n, cov(e) = Ruxn.

This leads directly to:



Theorem 6. Consider the mized model Mymix = {y, X8 + Z~, D, R}. Then
the linear estimator By is the BLUE for X3 if and only if

B(X:2X') = (X:0),
where X = ZDZ' + R. Moreover, Ay is the BLUP for v if and only if
A(X:EX1) = (0: DZ'X").

In terms of Pandora’s Box (Theorem 2), Ay = BLUP(v) if and only if there
exists a matriz L such that A satisfies the equation

¥ X\ /A" [(ZD
X0 L) \ o0/
For the equality between the BLUPs under two mixed models, see Haslett
and Puntanen (2010b, 2010c).

6.1 Note

Reprinted with permission from Lovric, Miodrag (2011), International Ency-
clopedia of Statistical Science. Heidelberg: Springer Science+Business Media,
LLC.
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