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1. Introduction.

A function f from Rp to R is said to be linear if for vectors x, y ∈ Rp and

any real scalar α, f(αx+ y) = αf(x) + f(y). Any function f that is not linear

is said to be nonlinear.

In the analysis of stationary time series, the spectral density function, if

it exists, is nonlinear under the above definition. However, for reasons to be

made clear later, a statistical analysis that is based on it or its equivalents

is ordinarily considered a linear analysis. Often, a time series is observed at

discrete time intervals. For a discrete-time stationary time series {Xt : t =

. . . ,−1, 0, 1, . . .} with finite variance, corr(Xt, Xt+s) is a function of s only, say

ρ(s), and is called the auto-correlation function. The spectral density function is

the Fourier transform of ρ(s) if
∑

∞

s=−∞
|ρ(s)| < ∞. Now, Yule (1927) introduced

the celebrated autoregressive model in time series. Typically the model takes

the form

Xt = α0 + α1Xt−1 + · · ·+ αpXt−p + εt, (1)

where the α’s are parameters and {εt} is a sequence of independent and iden-

tically distributed random variables with zero mean and finite variance, or a

white noise for short. It is commonly denoted as an AR(p) model. Clearly Xt

is a linear function of Xt−1, . . . , Xt−p, εt. Under the assumption of normality,
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the distribution of the time series is completely specified by its constant mean,

constant variance and ρ(s)’s. Perhaps for the close connection with the analysis

of linear models (of which the autoregressive model is one), an analysis based

on the autocorrelation function or equivalently the spectral density function is

loosely referred to as a linear analysis of the time series. By the same token, an

analysis based on higher order moments or their Fourier transforms is loosely

called a nonlinear analysis. Broadly speaking, tools based on the Fourier trans-

forms of moments constitute what is called the frequency-domain approach,

while those based on the moments constitute the time-domain approach, which

often includes building a time series model of the form (1) or its generalizations.

Similar discussion as the above can be extended to cover {X(t) : t ∈ R}

2. Can we do without nonlinearity?

A general answer is in the negative simply because the dynamical laws gov-

erning Nature or human activities are seldom linear. In the real world, we can

see the footprints of nonlinearity everywhere we look. Below are a few examples.

(a) Phase Transition

The melting of ice of a glacier will alter fundamentally the amount of water

flowed in a river near the glacier. Phase transition (from solid to liquid in the

above example) is an importance signature of nonlinearity. Animals behave

differently (e.g. hunting effort) during time of short food supply versus time of

abundant food supply.

(b) Saturation

In economics, diminishing return is a well-known phenomenon: doubling

your effort does not necessarily double your reward.

(c) Synchronization

The celebrated Dutch scientist, Christiaan Huygens, observed that clocks

placed on the same piece of soft timber were synchronized! Biological systems

can also exhibit synchronization. It has been noted that girls sharing the same

dormitory have higher chance of synchronizing their menstruation. Even female

keepers of baboons have been known to have similar experience.

(d) Chaos

When we toss a coin to randomize our choice, we are exploiting nonlinearity,
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for the dynamical system underlying the tossing is a set of (typically three)

nonlinear ordinary differential equations, the solution of which is generally very

sensitive to the initial spinning unless we ‘cheat’. The system is said to generate

chaos in a technical sense. When statisticians generate pseudo-random numbers,

they are also generating chaos. One of the most commonly used pseudo-random

generator is the linear congruential generator, which is a piecewise linear (i.e.

nonlinear) function that does precisely this. It might surprise you that you are

actually using nonlinear devices almost daily because encrypting passwords is

closely related to pseudo-random number generation.

In the following sections, we focus on the time-domain approach because at

the current state of development, this approach tends to admit simpler inter-

pretations in practical applications.

3. What is a nonlinear time series model?

A short answer is that it is not a linear time series model. This raises

the need to define a linear model. A fairly commonly adopted definition is as

follows. A stationary time series model is called a linear time series model if it

is equivalent (for example in the mean-square sense) to

Xt =

∞∑

s=−∞

βsεt−s, (2)

where {εt} is a white noise and the summation is assumed to exist in some

sense. An alternative definition due to Hannan (1973) is one that requires that

the minimizer of E|Xt−h(Xt−1, Xt−2, . . .)|
2 with respect to h over the space of

all measurable functions is the linear function. Here the mean square is assumed

to exist.

4. Are linear time series models fit for purpose?

Examples abound of the inability of linear time series models to capture

essential features of the underlying dynamics.

Yule (1927) introduced the autoregressive model to model the annual sunspot

numbers with a view to capturing the observed 11-year sunspot cycle but noted

the inadequacy of his model. He noted the asymmetry of the cycle and at-

tempted to model it with an AR(4) model only to discover that it gave statis-

tically a worse fit than a simpler AR(2) model.
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Moran (1953) fitted an AR(2) model to the annual lynx data corresponding

to the MacKenzie River region in Canada, with a view to capturing the ob-

served 10-year cycle. He was quick to point out that the fitted residuals were

heteroscedastic.

Whittle (1954) analyzed a seiche record fromWellington Bay in New Zealand.

He noted that, besides the fundamental frequency of oscillations and a frequency

due to the reflection of an island at the bay, there were sub-harmonics bearing an

interesting arithmetic relation with the above frequencies. Now, sub-harmonics

are one of the signatures of nonlinear oscillations, long known to the physicists

and engineers.

5 Examples of nonlinear time series models.

First, we describe parametric models. Due to space limitation, we describe

the two most commonly used models. For other models, we refer to Tong

(1990). We shall describe (i) the threshold model and (ii) the (generalized)

autoregressive conditional heteroscedasticity model, or in short the TAR model

and the (G)ARCH model respectively. The former was introduced by Tong in

1977 and developed systematically in Tong and Lim (1980) and Tong (1983,

1990), and the latter by Engle (1982), later generalized by Bollerslev (1986).

There are several different but equivalent ways to express a TAR model. Here

is a simple form. Let {Zt} denote an indicator time series that takes positive

integer values, say {1, 2, . . . ,K}. Let {ηt} denote a white noise with zero mean

and unit variance, α
(j)
0 , α

(j)
i , β(j) be real constants for j = 1, 2, . . . ,K. Then a

time series {Xt : t = 0,±1,±2, . . .} is said to follow a threshold autoregressive

model if it satisfies, when Zt = j, j = 1, . . . ,K,

Xt = α
(j)
0 +

p∑

i=1

α
(j)
i Xt−i + β(j)ηt. (3)

For the case in which Zt = j if and only if Xt−d ∈ Rj for some positive

integer d and for some partition of R, i.e. R =
⋃K

i=1 Ri say, the TAR model is

called a self-exciting threshold autoregressive model, or SETAR model for short.

In this case, given Xt−s, s > 0, the conditional mean of Xt is piecewise linear,

and the conditional variance of Xt piecewise constant.

For the case in which Zt = j if and only if Yt−d ∈ Rj for some covariate time
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series {Yt}, some positive integer d and some partition of R, i.e. R = ∪K
i=1Ri

say, then we have a TAR model driven by (or excited by) {Yt}. Note that

the covariate time series {Yt}, and thus the indicator time series {Zt}, can

be observable or hidden. If the indicator time series, whether observable or

hidden, forms a Markov chain, then we call {Xt} a Markov-chain driven TAR;

this model was first introduced by Tong (Tong and Lim, 1980, p.285 and Tong

1982, p.62). In the econometric literature, the sub-class with a hidden Markov

chain is commonly called a Markov switching model.

The TAR model, especially the SETAR model, has many practical applica-

tions in diverse areas/disciplines, including earth sciences, ecology, economics,

engineering, environmental science, finance, hydraulics, medical science, water

resources and many others.

The nonlinear parametric model that is mostly and widely used in econo-

metrics and finance is the (G)ARCH model. The ARCH model is given by

Xt = ηtσt, (4)

where {ηt} is as defined previously but sometimes assumed to be Gaussian, and

σ2
t = α0 +

∑p

i=1 αiX
2
t−i, α0 > 0, αi ≥ 0, i = 1, . . . , p. Note that the ARCH

model differs from the SETAR model in its σt being a continuous function

instead of a piecewise constant function as in the latter. The GARCH model

generalizes σ2
t to σ2

t = α0+
∑p

i=1 αiX
2
t−i+

∑q

i=1 βiσ
2
t−i, where the βis are usually

also assumed to be non-negative, although the non-negativity assumption may

be relaxed; see Cryer and Chan (2008, Chapter 12).

One of the limitations of any parametric modelling approach is the subjec-

tivity of selecting a family of possible parametric models. We can sometimes

mitigate the situation if a certain parametric family is suggested by subject

matter considerations. In the absence of the above, mitigation is weaker even

if we are assured that the family is dense in some sufficiently large space of

models. It is then tempting to allow the data to suggest the form of F where

we are contemplating a model of say

Xt = F (Xt−1, . . . , Xt−p, εt), (5)

F being unknown. This is one of the strengths of the nonparametric modelling

approach, which is a vast and rapidly expanding area. A word of caution is
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the so-called curse of dimensionality, meaning that when p > 3 the estimated

F is unlikely to be reliable unless we have a huge sample size. One way to

ameliorate the situation is to replace Xt−1, . . . , Xt−p by ξt−1, . . . , ξt−q with q

much smaller than p, e.g. q = 1 or 2. The ξ’s are typically suitably chosen but

unknown linear functions of X ’s, sometimes called indices. This is called the

semi-parametric modelling approach, which is also a rapidly expanding field.

For comprehensive accounts of the above developments, see, e.g., Fan and Yao

(2005) and Gao (2007). Another way is to impose some simplifying structure

on (5) such as zero interaction as in Chen and Tsay (1993), who gave

Xt = F (Xt−1) + · · ·+ F (Xt−p) + εt. (6)
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