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The bootstrap, introduced by Efron (1979), merges simulation with formal
model-based statistical inference. A statistical model for a sample X,, of size n is a
family of distributions {Py,: 0 € ©}. The parameter space © is typically metric,
possibly infinite-dimensional. The value of 6 that identifies the true distribution
from which X, is drawn is unknown. Suppose that én = én(Xn) is a consistent
estimator of #. The bootstrap idea is:

(a) Create an artificial bootstrap world in which the true parameter value
is 6, and the sample X is generated from the fitted model P - That is, the
conditional distribution of X, given the data X, is P;

[

(b) Act as if a sampling distribution computed in the fully known bootstrap
world is a trustworthy approximation to the corresponding, but unknown, sampling
distribution in the model world.

For example, consider constructing a confidence set for a parametric function
7(0), whose range is the set T'. As in the classical pivotal method, let R, (X, 7(0))
be a specified root, a real-valued function of the sample and 7(0). Let H,(f) be
the sampling distribution of the root under the model. The bootstrap distribution

of the root is H,(0,), a random probability measure that can also be viewed as
the conditional distribution of R, (X}, T(én)) given the sample X,,. An associated
bootstrap confidence set for 7(6), of nominal coverage probability 3, is then C), g =
{teT: Ry(Xn,t) < H;'(8,0,)}. The quantile on the right can be approximated,
for instance, by Monte Carlo techniques. The intuitive expectation is that the
coverage probability of C,, g will be close to 8 whenever 0, is close to 6.

When does the bootstrap approach work? Bootstrap samples are perturba-
tions of the data from which they are generated. If the goal is to probe how a
statistical procedure performs on data sets similar to the one at hand, then re-
peating the statistical procedure on bootstrap samples stands to be instructive.
An exploratory rationale for the bootstrap appeals intellectually when empirically
supported probability models for the data are lacking. Indeed, the literature on
“statistical inference” continues to struggle with an uncritical tendency to view
data as a random sample from a statistical model known to the statistician apart
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from parameter values. In discussing the history of probability theory, Doob (1972)
described the mysterious interplay between probability models and physical phe-
nomena: “But deeper and subtler investigations had to await until the blessing and
curse of direct physical significance had been replaced by the bleak reliability of
abstract mathematics.”

Efron (1979) and most of the subsequent bootstrap literature postulate that
the statistical model { Py, : 0 € ©} for the data is credible. “The bootstrap works”
is taken to mean that bootstrap distributions, and interesting functionals thereof,
converge in probability to the correct limits as sample size n increases. The con-
vergence is typically established pointwise for each value of 6 in the parameter
space ©. A template argument: Suppose that © is metric and that (a) 6, — 0 in
Py ,-probability as n — oo; (b) for any sequence {,, € ©} that converges to 0,
H,(0,) = H(#). Then Hn(én) = H(0) in Py ,-probability. Moreover, any weakly
continuous functional of the bootstrap distribution converges in probability to the
value of that functional at the limit distribution.

Such equicontinuity reasoning, in various formulations, is widespread in the
literature on bootstrap convergence. For statistical models of practical interest,
considerable insight may be needed to devise a metric on © such that the template
sufficient conditions both hold. Some early papers on bootstrap convergence after
Efron (1979) are Bickel and Freedman (1981), Hall (1986), Beran (1987). Broader
references are the books and monographs by Hall (1992), Mammen (1992), Efron
and Tibshirani (1993), Davison and Hinkley (1997) and the review articles in the
bootstrap issue of Statistical Science 18 (2003).

These references leave the impression that bootstrap methods often work, in
the sense of correct pointwise asymptotic convergence or pointwise second-order
accuracy, at every # in the parameter space ©. Counter-examples to this impres-
sion have prompted further investigations. One line of research has established
necessary and sufficient conditions for correct pointwise convergence of bootstrap
distributions as n tends to infinity (cf. Beran (1997), van Zwet and van Zwet (1999)).

In another direction, Putter (1994) showed: Suppose that the parameter
space © is complete metric and that (a) Hy, () = H(0) for every € © as n — oo;
(b) H,(0) is continuous in @, in the topology of weak convergence, for every n > 1;
(¢) 0, — 0 in Py ,-probability for every § € © as n — co. Then H,(6,) = H(0)
in Py ,-probability for “almost all” 8 € ©. The technical definition of “almost all”
is a set of Baire category II. While “almost all” § may sound harmless, the failure
of bootstrap convergence on a tiny set in the parameter space typically stems from
non-uniform convergence of bootstrap distributions over neighborhoods of that set.
When that is the case, pointwise limits are highly deceptive.

To see this concretely, let éms denote the James-Stein estimator for an
unknown p-dimensional mean vector € on which we have n i.i.d. observations,
each having a N(0,1,) error. Let H,(6) be the sampling distribution of the root
n1/2(én7s — 0) under this model. As n tends to infinity with p > 3 fixed, we find
(cf. Beran (1997)):

(a) The natural bootstrap distribution H, (X, ), where X,, is the sample mean



vector, converges correctly almost everywhere on the parameter space, except at
0 = 0. A similar failure occurs for the bootstrap distribution H, (6,,.s).

(b) The weak convergences of the sampling distribution H,(#) and of the two
bootstrap distributions just described are not uniform over neighborhoods of the
point of bootstrap failure, § = 0.

(c) The exact quadratic risk of the James-Stein estimator strictly dominates
that of X,, at every 6, especially at § = 0. If the dimension p is held fixed, the
region of substantial dominance in risk shrinks towards # = 0 as n increases. The
asymptotic risk of the James-Stein estimator dominates that of the sample mean
only at # = 0. That the dominance is strict for every finite n > 1 is missed by
the non-uniform limit. Apt in describing non-uniform limits is George Berkeley’s
celebrated comment on infinitesimals: “ghosts of departed quantities.”

In the James-Stein example, correct pointwise convergence of bootstrap distri-
butions as n tends to infinity is an inadequate “bootstrap works” concept, doomed
by lack of uniform convergence. The example provides a leading instance of an es-
timator that dominates classical counterparts in risk and fails to bootstrap naively.
The message extends farther. Stein (1956, first section) already noted that multi-
ple shrinkage estimators, which apply different shrinkage factors to the summands
in a projective decomposition of the mean vector, are “better for most practical
purposes.” Stein (1966) developed multiple shrinkage estimators in detail. In re-
cent years, low risk multiple shrinkage estimators have been constructed implicitly
through regularization techniques, among them adaptive penalized least squares
with quadratic penalties, adaptive submodel selection, or adaptive symmetric lin-
ear estimators. Naive bootstrapping of such modern estimators fails as it does in
the James-Stein case.

Research into these difficulties has taken two paths: (a) devising bootstrap
patches that fix pointwise convergence of bootstrap distributions as the number
of replications n tends to infinity (cf. Beran (1997) for examples and references to
the literature); (b) studying bootstrap procedures under asymptotics in which the
dimension p of the parameter space increases while n is held fixed or increases.
Large p bootstrap asymptotics turn out to be uniform over usefully large subsets of
the parameter space and yield effective bootstrap confidence sets around the James-
Stein estimator and other regularization estimators (cf. Beran (1995), Beran and
Diimbgen (1998)). The first section of Stein (1956) foreshadowed the role of large
p asymptotics in studies of modern estimators.

References

[1] Beran, R. (1987). Prepivoting to reduce level error of confidence sets. Biometrika 74
457-468.

[2] Beran, R. (1995). Stein confidence sets and the bootstrap. Statistica Sinica 5 109-127.

[3] Beran, R. (1997). Diagnosing bootstrap success. Annals of the Institute of Statistical
Mathematics 49 1-24.

[4] Beran, R. and Diimbgen, L. (1998). Modulation of estimators and confidence sets.
Annals of Statistics 26 1826-1856.



(5]
(6]
(7]

(8]
(9]
(10]

[11]
[12]

Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap.
Annals of Statistics 9 1196-1217.

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and their Application.
Cambridge University Press.

Doob, J. L. (1972). William Feller and twentieth century probability. In Proceedings
of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (L. M. Le
Cam, J. Neyman, E. L. Scott, eds.) II, xv—xx. University of California Press, Berkeley
and Los Angeles.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statis-
tics 7 1-26.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and
Hall, New York.

Hall, P. (1986). On the bootstrap and confidence intervals. Annals of Statistics 14
1431-1452.

Hall, P. (1992) The Bootstrap and Edgeworth Ezpansion. Springer, New York.
Mammen, E. (1992). When Does Bootstrap Work? Lecture Notes in Statistics 77.
Springer, New York.

Putter, H. (1994). Consistency of Resampling Methods. Ph.D. dissertation, Leiden
University.

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate
normal distribution. In Proceedings of the Third Berkeley Symposium on Mathematical
Statistics and Probability (J. Neyman, ed.) I, 197-206. University of California Press,
Berkeley and Los Angeles.

Stein, C. (1966). An approach to the recovery of inter-block information in balanced
incomplete block designs. In Festschrift for Jerzy Neyman (F. N. David, ed.) 351-364.
Wiley, New York.

van Zwet, E. W. and van Zwet, W. R. (1999). A remark on consistent estimation.
Mathematical Methods of Statistics 8 277—284.



