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1 Definition

Suppose that we have vectors of random variables [v,w] = [v1, v2, . . . , vI , w1, . . . , wJ ]
in ℜ(I+J). Denote as the joint density function: fv,w, which obeys:fv,w(v, w) ≥
0 and∫∞

−∞
. . .

∫∞

−∞
fv,w(v, w)dv1 . . . dvIdw1 . . . dwI = 1. Then the probability of the

set [Av, Bw] is given by

P (Av, Bw) =

∫
. . .

∫
Av,Bw

fv,w(v, w)dvdw.

The the marginal density fv is obtained as

fv(v) =

∫ ∞

−∞

. . .

∫ ∞

−∞

fv,w(v, w)dw1 . . . dwI .

The the marginal probability of the set Av is then obtained as,

P (Av) =

∫
. . .

∫
Av

fv(v)dv.

We have assumed that the random variables are continuous. When they are
discrete, integrals are substituted by sums.
We proceed to present an important application of marginal densities to con-
struct the Evidence of the Model and marginal probabilities for measuring the
Bayesian Probability of a Model.
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2 Measuring the Evidence in Favor of a Model

In Statistics, a parametric model, is denoted as f(x1, . . . , xn|θ1, . . . , θk), where
x = (x1, . . . , xn) is the vector of n observations and θ = (θ1, . . . , θk) is the vector
of k parameters. For instance we may have n observations normally distributed
and the vector of parameters is (θ1, θ2) the location and scale respectively, de-
noted by fNormal(x|θ) =

∏n

i=1
1√
2πθ2

exp(− 1
2θ2

2

(xi − θ1)
2).

Assume now that there is reason to suspect that the location is zero. As a
second example, it may be suspected that the sampling model which usually
has been assumed Normally distributed, is instead a Cauchy, fCauchy(x|θ) =∏n

i=1
1

πθ2

1

(1+(
x
i
−θ1

θ2
)2)

. The first problem is a hypothesis test denoted by

H0 : θ1 = 0 VS H1 : θ1 6= 0,

and the second problem is a model selection problem:

M0 : fNormal VS M1 : fCauchy.

How to measure the evidence in favor of H0 or M0? Instead of maximizing
likelihoods as it is done in traditional significance testing, in Bayesian statistics
the central concept is the evidence or marginal probability density

mj(x) =

∫
fj(x|θj)π(θj)dθj,

where j denotes either model or hypothesis j and π(θj) denotes the prior for
the parameters under model or hypothesis j.
Marginal probabilities embodies the likelihood of a model or hypothesis in great
generality and can be claimed it is the natural probabilistic quantity to compare
models.

3 Marginal Probability of a Model

Once the marginal densities of the model j, for j = 1, . . . , J models have been
calculated and assuming the prior model probabilities P (Mj), j = 1, . . . , J with∑J

j=1 P (Mj) = 1 then, using Bayes Theorem, the marginal probability of a

model P (Mj |x) can be calculated as,

P (Mj |x) =
mj(x) ·P(Mj)∑n

i=1 mi(x) ·P(Mi)
.

We have then the following formula for any two models or hypotheses:

P (Mj |x)
P (Mi|x)

=
P (Mj)

P (Mi)
× mj(x)

mi(x)
,
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or in words: Posterior Odds equals Prior Odds times Bayes Factor, where the
Bayes Factor of Mj over Mi is

Bj,i =
mj(x)

mi(x)
,

Jeffreys (1961).
In contrast to p-values, which have interpretations heavily dependent on the
sample size n, and its definition is not the same as the scientific question, the
posterior probabilities and Bayes Factors address the scientific question: ”how
probable is model or hypothesis j as compared with model or hypothesis i?”,
and the interpretation is the same for any sample size, Berger and Pericchi
(1996a, 2001). Bayes Factors and Marginal Posterior Model Probabilities have
several advantages, like for example large sample consistency, that is as the
sample size grows the Posterior Model Probability of the sampling model tends
to one. Furthermore, if the goal is to predict future observations yf it is not

necessary to select one model as the predicting model since we may predict by
the so called Bayesian Model Averaging, which if quadratic loss is assumed, the
optimal predictor takes the form,

E[Yf |x] =
J∑

j=1

E[Yf |x,Mj]×P(Mj|x),

where E[Yf |x,Mj] is the expected value of a future observation under the model
or hypothesis Mj.

4 Intrinsic Priors for Model Selection and Hy-

pothesis Testing

Having said some of the advantages of the marginal probabilities of models,
the question arises: how to assign the conditional priors π(θj)? In the two
examples above which priors are sensible to use? The problem is not a sim-
ple one since it is not possible to use the usual Uniform priors since then the
Bayes Factors are undetermined. To solve this problem with some general-
ity, Berger and Pericchi (1996a,b) introduced the concepts of Intrinsic Bayes
Factors and Intrinsic Priors. Start by splitting the sample in two sub-samples
x = [x(l),x(−l)] where the training sample x(l) is as small as possible such that
for j = 1, . . . , J : 0 < mj(x(l)) < ∞. Thus starting with an improper prior
πN (θj), which does not integrate to one (for example the Uniform), by using
the minimal training sample x(l), all the conditional prior densities π(θj |x(l))
become proper. So we may form the Bayes Factor using the training sample
x(l) as

Bji(x(l)) =
mj(x(−l)|x(l))
mi(x(−l)|x(l)) .
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This however depends on the particular training sample x(l). So some sort of
average of Bayes Factor is necessary. In Berger and Pericchi (1996) it is shown
that the average should be the arithmetic average. It is also found a theoretical
prior that is an approximation to the procedure just described as the sample
size grows. This is called an Intrinsic Prior. In the examples above: Example

1: in the normal case, assuming first that the variance is known θ22 = θ22,0 then
it turns out that the Intrinsic Prior is Normal centered at the null hypothesis
θ1 = 0 and with variance 2 · θ22,0. More generally when the variance is unknown

πI(θ1|θ2) =
1− exp(−θ21/θ

2
2)

2
√
π · (θ21/θ2)

, and πI(θ2) =
1

θ2
.

It turns out that πI(θ1|θ2) is a proper density, Berger and Pericchi (1996ab),
Pericchi(2005).
Example 2: in the Normal vs Cauchy example, it turns out that the improper
prior πI(θ1, θ2) = 1/θ2 is the appropriate prior for comparing the models, Per-
icchi (2005). For other examples of Intrinsic Priors see for instance, Berger and
Pericchi (1996a, 1996b, 2001), Moreno, Bertolino and Racugno (1998), Pericchi
(2005) and Casella and Moreno (2009), among others.
This article is based on an article from Lovric, Miodrag (2011), International
Encyclopedia of Statistical Science. Heidelberg: Springer Science +Business
Media, LLC
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