Namespaces
Variants
Actions

Difference between revisions of "WCG space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(latex fix)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 151 formulas, 151 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
''weakly compactly generated space''
 
''weakly compactly generated space''
  
A [[Banach space|Banach space]] possessing a weakly compact subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200301.png" /> (cf. [[Weak topology|Weak topology]]) whose linear span is dense. These spaces have regularity properties not found in a general Banach space. Examples of WCG spaces are all separable spaces (cf. [[Separable space|Separable space]]; pick a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200302.png" /> which is dense in the unit ball and take <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200303.png" />), all reflexive spaces (cf. [[Reflexive space|Reflexive space]]; take <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200304.png" /> to be the unit ball), all spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200305.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200306.png" /> is a finite or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200307.png" />-finite [[Measure|measure]] (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200308.png" /> is finite, take <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200309.png" />, i.e., the unit ball of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003010.png" /> considered as a subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003011.png" />) and certain spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003012.png" />, see below. Counterexamples are the non-separable spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003014.png" /> (here, a weakly compact set can be shown to be norm separable, and hence so is its closed linear span) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003015.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003016.png" /> is uncountable (here, a weakly compact set is even norm compact and thus norm separable as well).
+
A [[Banach space|Banach space]] possessing a weakly compact subset $K$ (cf. [[Weak topology|Weak topology]]) whose [[linear span]] is dense. These spaces have regularity properties not found in a general Banach space. Examples of WCG spaces are all separable spaces (cf. [[Separable space|Separable space]]; pick a sequence $( x _ { n } )$ which is dense in the unit ball and take $ K = \{ x _ { n } / n : n \in \mathbf{N} \} \cup \{ 0 \}$), all reflexive spaces (cf. [[Reflexive space|Reflexive space]]; take $K$ to be the unit ball), all spaces $L _ { 1 } ( \mu )$ if $\mu$ is a finite or $\sigma$-finite [[Measure|measure]] (if $\mu$ is finite, take $K = \left\{ f : \int | f | ^ { 2 } \leq 1 \right\}$, i.e., the unit ball of $L _ { 2 } ( \mu )$ considered as a subset of $L _ { 1 } ( \mu )$) and certain spaces $C ( \Omega )$, see below. Counterexamples are the non-separable spaces $\text{l} _ { \infty }$ and $L _ { \infty } [ 0,1 ]$ (here, a weakly compact set can be shown to be norm separable, and hence so is its closed linear span) and ${\bf l}_1 ( \Gamma )$ if $\Gamma$ is uncountable (here, a weakly compact set is even norm compact and thus norm separable as well).
  
The study of WCG spaces was initiated by D. Amir and J. Lindenstrauss [[#References|[a1]]], building on previous work by Lindenstrauss on reflexive spaces [[#References|[a11]]]. Their key lemma establishes the existence of a projectional resolution of the identity in a WCG space. Denote the density character of a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003017.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003018.png" />, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003019.png" /> is the smallest [[Cardinal number|cardinal number]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003020.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003021.png" /> has a dense subset of cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003022.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003023.png" /> be the smallest [[Ordinal number|ordinal number]] of cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003024.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003025.png" /> denote the smallest infinite ordinal number. Then a projectional resolution of the identity is a family of projections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003026.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003028.png" />, satisfying:
+
The study of WCG spaces was initiated by D. Amir and J. Lindenstrauss [[#References|[a1]]], building on previous work by Lindenstrauss on reflexive spaces [[#References|[a11]]]. Their key lemma establishes the existence of a projectional resolution of the identity in a WCG space. Denote the density character of a Banach space $X$ by $\operatorname{dens} (X )$, i.e., $\operatorname{dens} (X )$ is the smallest [[Cardinal number|cardinal number]] $\kappa$ for which $X$ has a dense subset of cardinality $\kappa$. Let $\mu$ be the smallest [[Ordinal number|ordinal number]] of cardinality $\operatorname{dens} (X )$, and let $\omega_0$ denote the smallest infinite ordinal number. Then a projectional resolution of the identity is a family of projections $P _ { \alpha }$ on $X$, $\omega _ { 0 } \leq \alpha \leq \mu$, satisfying:
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003029.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003030.png" />;
+
1) $\| P _ { \alpha } \| = 1$ for all $\alpha$;
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003032.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003033.png" />;
+
2) $P _ { \mu } = \operatorname{Id}$ and $P _ { \alpha } P _ { \beta } = P _ { \beta } P _ { \alpha } = P _ { \alpha }$ if $\alpha &lt; \beta$;
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003034.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003035.png" />;
+
3) $\operatorname { dens } ( P _ { \alpha } ( X ) ) \leq \operatorname { card } ( \alpha )$ for all $\alpha$;
  
4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003036.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003037.png" /> is a limit ordinal number. It then follows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003038.png" /> is continuous in the order topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003039.png" /> and the norm topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003040.png" />, for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003041.png" />. Properties of Banach spaces admitting a projectional resolution of the identity can often be investigated by means of [[Transfinite induction|transfinite induction]] arguments over the index set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003042.png" />, starting from the separable case.
+
4) $\overline { \cup _ { \alpha &lt; \beta } P _ { \alpha } ( X ) } = P _ { \beta } ( X )$ if $\beta$ is a limit ordinal number. It then follows that $\alpha \mapsto P _ { \alpha } ( x )$ is continuous in the order topology of $[ \omega _ { 0 } , \mu ]$ and the norm topology of $X$, for each $x \in X$. Properties of Banach spaces admitting a projectional resolution of the identity can often be investigated by means of [[Transfinite induction|transfinite induction]] arguments over the index set $[ \omega _ { 0 } , \mu ]$, starting from the separable case.
  
 
The most important results from [[#References|[a1]]] are the following:
 
The most important results from [[#References|[a1]]] are the following:
  
a) For a WCG space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003043.png" /> there exist a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003044.png" /> and a continuous linear one-to-one operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003045.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003046.png" />, the sup-normed space of all functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003047.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003048.png" /> such that for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003049.png" /> the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003050.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003051.png" /> is finite.
+
a) For a WCG space $X$ there exist a set $\Gamma$ and a continuous linear one-to-one operator from $X$ into $c_0 ( \Gamma )$, the sup-normed space of all functions $f$ on $\Gamma$ such that for each $\varepsilon &gt; 0$ the set of $\gamma$ satisfying $| f ( \gamma ) | \geq \varepsilon$ is finite.
  
b) There is a continuous linear injection from the dual space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003052.png" /> (cf. also [[Adjoint space|Adjoint space]]) into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003053.png" /> that is continuous for the weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003054.png" /> topology (cf. also [[Topological vector space|Topological vector space]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003055.png" /> and the [[Weak topology|weak topology]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003056.png" />. This has important consequences on renormings of WCG spaces (see below) and on the structure of weakly compact sets. A topological space is called an [[Eberlein compactum|Eberlein compactum]] if it is homeomorphic to a weakly compact set of some Banach space. Every compact metric space is an Eberlein compactum, but the ordinal space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003057.png" /> is not if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003058.png" /> is uncountable. It follows from the above that an Eberlein compactum is even homeomorphic to a weakly compact subset of some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003059.png" />-space and, consequently, Eberlein compacta embed homeomorphically into a  "small"  subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003060.png" />; for precision, see below.
+
b) There is a continuous linear injection from the dual space $X ^ { * }$ (cf. also [[Adjoint space|Adjoint space]]) into $c_0 ( \Gamma )$ that is continuous for the weak-${}^{*}$ topology (cf. also [[Topological vector space]]) of $X ^ { * }$ and the [[Weak topology|weak topology]] of $c_0 ( \Gamma )$. This has important consequences on renormings of WCG spaces (see below) and on the structure of weakly compact sets. A topological space is called an [[Eberlein compactum|Eberlein compactum]] if it is homeomorphic to a weakly compact set of some Banach space. Every compact metric space is an Eberlein compactum, but the ordinal space $[ 0 , \omega ]$ is not if $\omega$ is uncountable. It follows from the above that an Eberlein compactum is even homeomorphic to a weakly compact subset of some $c_0 ( \Gamma )$-space and, consequently, Eberlein compacta embed homeomorphically into a  "small"  subset of $[ 0,1 ] ^ { \Gamma }$; for precision, see below.
  
c) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003061.png" /> is WCG, then the dual unit ball <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003062.png" /> in its weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003063.png" /> topology is an Eberlein compactum. The Eberlein–Shmul'yan theorem (cf. [[Banach space|Banach space]]) implies that it is weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003065.png" /> sequentially compact (i.e., each bounded sequence in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003066.png" /> has a weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003067.png" /> convergent subsequence).
+
c) If $X$ is WCG, then the dual unit ball $B _ { X } *$ in its weak-${}^{*}$ topology is an Eberlein compactum. The Eberlein–Shmul'yan theorem (cf. [[Banach space]]) implies that it is weak-${}^{*}$ sequentially compact (i.e., each bounded sequence in $X ^ { * }$ has a weak-${}^{*}$ convergent subsequence).
  
d) A space of continuous functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003068.png" /> on a compact [[Hausdorff space|Hausdorff space]] is WCG if and only <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003069.png" /> is Eberlein compact.
+
d) A space of continuous functions $C ( \Omega )$ on a compact [[Hausdorff space|Hausdorff space]] is WCG if and only $\Omega$ is Eberlein compact.
  
e) Another remarkable property of WCG spaces is the separable complementation property: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003070.png" /> is a separable subspace of a WCG space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003071.png" />, then there exists a separable subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003072.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003073.png" /> that is the range of a contractive projection.
+
e) Another remarkable property of WCG spaces is the separable complementation property: If $Y$ is a separable subspace of a WCG space $X$, then there exists a separable subspace $Z \subset X$ containing $Y$ that is the range of a contractive projection.
  
By [[#References|[a3]]], a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003074.png" /> is WCG if and only if there is a continuous linear operator from some reflexive space into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003075.png" /> having dense range, and an Eberlein compactum is homeomorphic to a weakly compact subset of some reflexive space. An interesting topological property is that the weak topology of a WCG space is a [[Lindelöf space|Lindelöf space]] [[#References|[a17]]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003076.png" /> is WCG, then every separable subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003077.png" /> has a separable dual; in other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003078.png" /> is an [[Asplund space|Asplund space]].
+
By [[#References|[a3]]], a Banach space $X$ is WCG if and only if there is a continuous linear operator from some reflexive space into $X$ having dense range, and an Eberlein compactum is homeomorphic to a weakly compact subset of some reflexive space. An interesting topological property is that the weak topology of a WCG space is a [[Lindelöf space|Lindelöf space]] [[#References|[a17]]]. If $X ^ { * }$ is WCG, then every separable subspace of $X$ has a separable dual; in other words, $X$ is an [[Asplund space|Asplund space]].
  
As for permanence properties of WCG spaces, it is clear that quotients of WCG spaces are again WCG. However, a closed subspace of a WCG space need not be WCG; the first example of this kind was constructed by H.P. Rosenthal [[#References|[a15]]]. In certain classes of Banach spaces, the WCG-property is known to be hereditary, for example in WCG spaces with an equivalent Fréchet-differentiable norm [[#References|[a9]]] (cf. also [[Fréchet derivative|Fréchet derivative]]). An important class of hereditarily WCG spaces are Banach spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003079.png" /> that are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003081.png" />-ideals in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003082.png" />, meaning that in the canonical decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003083.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003084.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003085.png" /> the norm is additive: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003086.png" /> [[#References|[a6]]]. A Banach space is isomorphic to a subspace of a WCG space if and only if its dual unit ball in the weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003087.png" /> topology is an Eberlein compactum [[#References|[a2]]]. Turning to duality, it is obvious that the dual of a WCG space need not be WCG (consider <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003088.png" /> with its dual space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003089.png" />); however, there are also examples of non-WCG spaces with WCG duals [[#References|[a10]]]. It is an open problem (1998) whether <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003090.png" /> has to be WCG whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003091.png" /> is.
+
As for permanence properties of WCG spaces, it is clear that quotients of WCG spaces are again WCG. However, a closed subspace of a WCG space need not be WCG; the first example of this kind was constructed by H.P. Rosenthal [[#References|[a15]]]. In certain classes of Banach spaces, the WCG-property is known to be hereditary, for example in WCG spaces with an equivalent Fréchet-differentiable norm [[#References|[a9]]] (cf. also [[Fréchet derivative|Fréchet derivative]]). An important class of hereditarily WCG spaces are Banach spaces $X$ that are $M$-ideals in $X ^ {**}$, meaning that in the canonical decomposition of $X ^ { * * * }$ into $X ^ { * }$ and $X ^ { \perp }$ the norm is additive: $\| x ^ { * } + x ^ { \perp } \| = \| x ^ { * } \| + \| x ^ { \perp } \|$ [[#References|[a6]]]. A Banach space is isomorphic to a subspace of a WCG space if and only if its dual unit ball in the weak-${}^{*}$ topology is an Eberlein compactum [[#References|[a2]]]. Turning to duality, it is obvious that the dual of a WCG space need not be WCG (consider $\mathbf{l}_{1}$ with its dual space $\text{l} _ { \infty }$); however, there are also examples of non-WCG spaces with WCG duals [[#References|[a10]]]. It is an open problem (1998) whether $X$ has to be WCG whenever $X ^ {**}$ is.
  
As remarked above, the injection of WCG spaces into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003092.png" /> leads to renorming results; for example, since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003093.png" /> has a strictly convex equivalent norm (see [[Banach space|Banach space]]), every WCG space can be renormed to be strictly convex. Likewise, a WCG space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003094.png" /> has a Gâteaux-differentiable equivalent norm (cf. [[Gâteaux derivative|Gâteaux derivative]]), whose corresponding dual norm on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003095.png" /> is strictly convex. A much stronger result is due to S. Troyanski [[#References|[a18]]]: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003096.png" /> is WCG, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003097.png" /> has an equivalent locally uniformly rotund norm whose dual norm is strictly convex. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003098.png" /> is WCG, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003099.png" /> has an equivalent locally uniformly rotund norm whose dual norm is locally uniformly rotund, too; in particular, this norm is Fréchet differentiable (cf. also [[Fréchet derivative|Fréchet derivative]]). Recall that a norm is locally uniformly rotund (or convex) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030100.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030101.png" /> imply <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030102.png" /> (see [[Banach space|Banach space]]).
+
As remarked above, the injection of WCG spaces into $c_0 ( \Gamma )$ leads to renorming results; for example, since $c_0 ( \Gamma )$ has a strictly convex equivalent norm (see [[Banach space|Banach space]]), every WCG space can be renormed to be strictly convex. Likewise, a WCG space $X$ has a Gâteaux-differentiable equivalent norm (cf. [[Gâteaux derivative|Gâteaux derivative]]), whose corresponding dual norm on $X ^ { * }$ is strictly convex. A much stronger result is due to S. Troyanski [[#References|[a18]]]: If $X$ is WCG, then $X$ has an equivalent locally uniformly rotund norm whose dual norm is strictly convex. If $X ^ { * }$ is WCG, then $X$ has an equivalent locally uniformly rotund norm whose dual norm is locally uniformly rotund, too; in particular, this norm is Fréchet differentiable (cf. also [[Fréchet derivative|Fréchet derivative]]). Recall that a norm is locally uniformly rotund (or convex) if $\| x _ { n } \| _ { \rightarrow } \| x \|$ and $\| ( x _ { n } + x ) / 2 \| \rightarrow \| x \|$ imply $x _ { n } \rightarrow x$ (see [[Banach space|Banach space]]).
  
A Markushevich basis of a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030103.png" /> is a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030104.png" /> that is bi-orthogonal (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030105.png" />), fundamental (the linear span of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030106.png" /> is dense) and total (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030107.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030108.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030109.png" />; equivalently, the linear span of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030110.png" /> is weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030111.png" /> dense); it is called shrinking if the linear span of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030112.png" /> is even norm dense. Every WCG space admits a Markushevich basis, and a Banach space with a shrinking Markushevich basis is WCG; in fact, such a space is hereditarily WCG.
+
A Markushevich basis of a Banach space $X$ is a system $\{ ( x _ { i } , x _ { i } ^ { * } ) : i \in I \} \subset X \times X ^ { * }$ that is bi-orthogonal ($x _ { i } ^ { * } ( x _ { j } ) = \delta _ { i j }$), fundamental (the linear span of the $x_{i}$ is dense) and total (if $x _ { i } ^ { * } ( x ) = 0$ for all $i$, then $x = 0$; equivalently, the linear span of the $x _ { i } ^ { * }$ is weak-${}^{*}$ dense); it is called shrinking if the linear span of the $x _ { i } ^ { * }$ is even norm dense. Every WCG space admits a Markushevich basis, and a Banach space with a shrinking Markushevich basis is WCG; in fact, such a space is hereditarily WCG.
  
 
==Generalizations.==
 
==Generalizations.==
In the 1990s, several generalizations of the concept of a WCG space have been investigated (see [[#References|[a7]]]). One of these is the notion of a weakly countably determined space (a WCD space), introduced by L. Vašák [[#References|[a19]]]. A Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030113.png" /> is said to be WCD if there are countably many weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030114.png" /> compact subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030115.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030116.png" /> such that whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030117.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030118.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030119.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030120.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030121.png" />. Every WCG space is WCD (consider the doubly indexed countable collection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030122.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030123.png" /> is a weakly compact set generating <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030124.png" />), and since the latter class is hereditary, even every subspace of a WCG space is WCD. On the other hand, there are WCD spaces which are not isomorphic to subspaces of any WCG space. Essentially all the results on WCG spaces carry over to this larger class and thus to subspaces of WCG spaces: WCD spaces have projectional resolutions of the identity, they inject into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030125.png" />, they enjoy the separable complementation property, their weak topology is Lindelöf, they can be renormed with locally uniformly rotund norms, and they have Markushevich bases.
+
In the 1990s, several generalizations of the concept of a WCG space have been investigated (see [[#References|[a7]]]). One of these is the notion of a weakly countably determined space (a WCD space), introduced by L. Vašák [[#References|[a19]]]. A Banach space $X$ is said to be WCD if there are countably many weak-${}^{*}$ compact subsets $K _ { 1 } , K _ { 2 } , \ldots$ of $X ^ {**}$ such that whenever $x \in X$ and $x ^ { * * } \in X ^ { * * } \backslash X$, then $x \in K _ { n }$ and $x ^ { * * } \notin K _ { n }$ for some $n$. Every WCG space is WCD (consider the doubly indexed countable collection $n K + m ^ { - 1 } B _ { X^{**} } $, where $K$ is a weakly compact set generating $X$), and since the latter class is hereditary, even every subspace of a WCG space is WCD. On the other hand, there are WCD spaces which are not isomorphic to subspaces of any WCG space. Essentially all the results on WCG spaces carry over to this larger class and thus to subspaces of WCG spaces: WCD spaces have projectional resolutions of the identity, they inject into $c_0 ( \Gamma )$, they enjoy the separable complementation property, their weak topology is Lindelöf, they can be renormed with locally uniformly rotund norms, and they have Markushevich bases.
  
The class of compact spaces that goes with WCD spaces are the Gul'ko compact spaces, or Gul'ko compacta. By definition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030126.png" /> is Gul'ko compact if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030127.png" /> is WCD. This class can also be described topologically. For a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030128.png" />, let
+
The class of compact spaces that goes with WCD spaces are the Gul'ko compact spaces, or Gul'ko compacta. By definition, $\Omega$ is Gul'ko compact if $C ( \Omega )$ is WCD. This class can also be described topologically. For a set $\Gamma$, let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030129.png" /></td> </tr></table>
+
\begin{equation*} \Sigma ( \Gamma ) : = \left\{ f \in [ 0,1 ] ^ { \Gamma } : \begin{array} { c c } { f ( \gamma ) \neq 0 } \\ { \text { for at most countable many } \gamma } \end{array} \right\} \end{equation*}
  
equipped with the product topology. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030130.png" /> is Gul'ko compact if and only if it is homeomorphic to some compact subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030131.png" /> of some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030132.png" /> so that there exist <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030133.png" /> with the property that for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030134.png" /> and for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030135.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030136.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030137.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030138.png" /> is finite. By contrast, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030139.png" /> is Eberlein compact if and only if it is homeomorphic to some compact subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030140.png" /> of some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030141.png" /> so that there exist <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030142.png" /> with the property that for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030143.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030144.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030145.png" /> and for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030146.png" /> and every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030147.png" />, the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030148.png" /> is finite. A Banach space is WCD if and only if its dual unit ball in the weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030149.png" /> topology is Gul'ko compact. Note that a Corson compact space, or Corson compactum, is, by definition, a compact space homeomorphic to some compact subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030150.png" /> for a suitable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030151.png" />. It is known that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030152.png" /> has a projectional resolution of the identity if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030153.png" /> is Corson compact.
+
equipped with the product topology. Then $\Omega$ is Gul'ko compact if and only if it is homeomorphic to some compact subset $\Omega ^ { \prime }$ of some $\Sigma ( \Gamma )$ so that there exist $\Gamma _ { 1 } , \Gamma _ { 2 } , \ldots \subset \Gamma$ with the property that for every $\gamma _ { 0 } \in \Gamma$ and for every $f \in \Omega ^ { \prime }$ there is an $m \in \mathbf{N}$ such that $\gamma _ { 0 } \in \Gamma _ { m }$ and $\{ \gamma \in \Gamma _ { m } : f ( \gamma ) \neq 0 \}$ is finite. By contrast, $\Omega$ is Eberlein compact if and only if it is homeomorphic to some compact subset $\Omega ^ { \prime }$ of some $\Sigma ( \Gamma )$ so that there exist $\Gamma _ { 1 } , \Gamma _ { 2 } , \ldots \subset \Gamma$ with the property that for every $\gamma _ { 0 } \in \Gamma$ there is an $m \in \mathbf{N}$ such that $\gamma _ { 0 } \in \Gamma _ { m }$ and for every $f \in \Omega ^ { \prime }$ and every $n \in \mathbf N$, the set $\{ \gamma \in \Gamma _ { n } : f ( \gamma ) \neq 0 \}$ is finite. A Banach space is WCD if and only if its dual unit ball in the weak-${}^{*}$ topology is Gul'ko compact. Note that a Corson compact space, or Corson compactum, is, by definition, a compact space homeomorphic to some compact subset of $\Sigma ( \Gamma )$ for a suitable $\Gamma$. It is known that $X$ has a projectional resolution of the identity if $( B _ { X ^ *} , w ^ { * } )$ is Corson compact.
  
 
Simpler proofs of the existence of a projectional resolution of the identity in a WCG space (in fact, in a WCD space) have been given by S.P. Gul'ko [[#References|[a8]]], J. Orihuela and M. Valdivia [[#References|[a14]]], and C. Stegall [[#References|[a16]]]. The theory of WCG spaces is surveyed in [[#References|[a5]]] and [[#References|[a12]]]; for more recent accounts see [[#References|[a4]]], [[#References|[a7]]] and [[#References|[a13]]].
 
Simpler proofs of the existence of a projectional resolution of the identity in a WCG space (in fact, in a WCD space) have been given by S.P. Gul'ko [[#References|[a8]]], J. Orihuela and M. Valdivia [[#References|[a14]]], and C. Stegall [[#References|[a16]]]. The theory of WCG spaces is surveyed in [[#References|[a5]]] and [[#References|[a12]]]; for more recent accounts see [[#References|[a4]]], [[#References|[a7]]] and [[#References|[a13]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D. Amir,  J. Lindenstrauss,  "The structure of weakly compact sets in Banach spaces"  ''Ann. of Math.'' , '''88'''  (1968)  pp. 35–46</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  Y. Benyamini,  M.E. Rudin,  M. Wage,  "Continuous images of weakly compact subsets of Banach spaces"  ''Pacific J. Math.'' , '''70'''  (1977)  pp. 309–324</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W.J. Davis,  T. Figiel,  W.B. Johnson,  A. Pełczyński,  "Factoring weakly compact operators"  ''J. Funct. Anal.'' , '''17'''  (1974)  pp. 311–327</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R. Deville,  G. Godefroy,  V. Zizler,  "Smoothness and renormings in Banach spaces" , Longman  (1993)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J. Diestel,  "Geometry of Banach spaces: Selected topics" , ''Lecture Notes Math.'' , '''485''' , Springer  (1975)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  M. Fabian,  G. Godefroy,  "The dual of every Asplund space admits a projectional resolution of the identity"  ''Studia Math.'' , '''91'''  (1988)  pp. 141–151</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  M. Fabian,  "Gâteaux differentiability of convex functions and topology" , Wiley–Interscience  (1997)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  S.P. Gul'ko,  "On the structure of spaces of continuous functions and their complete paracompactness"  ''Russian Math. Surveys'' , '''34''' :  6  (1979)  pp. 36–44</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  K. John,  V. Zizler,  "Smoothness and its equivalents in weakly compactly generated Banach spaces"  ''J. Funct. Anal.'' , '''15'''  (1974)  pp. 1–11</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  W.B. Johnson,  J. Lindenstrauss,  "Some remarks on weakly compactly generated Banach spaces"  ''Israel J. Math.'' , '''17'''  (1974)  pp. 219–230  (Corrigendum: 32 (1979), 382-383)</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  J. Lindenstrauss,  "On nonseparable reflexive Banach spaces"  ''Bull. Amer. Math. Soc.'' , '''72'''  (1966)  pp. 967–970</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  J. Lindenstrauss,  "Weakly compact sets: their topological properties and the Banach spaces they generate"  R.D. Anderson (ed.) , ''Symp. Infinite Dimensional Topol.'' , ''Math. Studies'' , '''69'''  (1972)  pp. 235–273</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  S. Negrepontis,  "Banach spaces and topology"  K. Kunen (ed.)  J.E. Vaughan (ed.) , ''Handbook of set-theoretic topology'' , Elsevier Sci.  (1984)  pp. 1045–1142</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  J. Orihuela,  M. Valdivia,  "Projective generators and resolutions of identity in Banach spaces"  ''Rev. Mat. Univ. Complutense Madr.'' , '''2'''  (1989)  pp. 179–199</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  H.P. Rosenthal,  "The heredity problem for weakly compactly generated Banach spaces"  ''Compositio Math.'' , '''28'''  (1974)  pp. 83–111</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top">  Ch. Stegall,  "A proof of the theorem of Amir and Lindenstrauss"  ''Israel J. Math.'' , '''68'''  (1989)  pp. 185–192</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top">  M. Talagrand,  "Sur une conjecture de H.H. Corson"  ''Bull. Sci. Math.'' , '''99'''  (1975)  pp. 211–212</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top">  S.L. Troyanski,  "On locally uniformly convex and differentiable norms in certain non-separable Banach spaces"  ''Studia Math.'' , '''37'''  (1971)  pp. 173–180</TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top">  L. Vašák,  "On one generalization of weakly compactly generated Banach spaces"  ''Studia Math.'' , '''70'''  (1981)  pp. 11–19</TD></TR></table>
+
<table>
 +
<tr><td valign="top">[a1]</td> <td valign="top">  D. Amir,  J. Lindenstrauss,  "The structure of weakly compact sets in Banach spaces"  ''Ann. of Math.'' , '''88'''  (1968)  pp. 35–46</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  Y. Benyamini,  M.E. Rudin,  M. Wage,  "Continuous images of weakly compact subsets of Banach spaces"  ''Pacific J. Math.'' , '''70'''  (1977)  pp. 309–324</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  W.J. Davis,  T. Figiel,  W.B. Johnson,  A. Pełczyński,  "Factoring weakly compact operators"  ''J. Funct. Anal.'' , '''17'''  (1974)  pp. 311–327</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  R. Deville,  G. Godefroy,  V. Zizler,  "Smoothness and renormings in Banach spaces" , Longman  (1993)</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  J. Diestel,  "Geometry of Banach spaces: Selected topics" , ''Lecture Notes Math.'' , '''485''' , Springer  (1975)</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  M. Fabian,  G. Godefroy,  "The dual of every Asplund space admits a projectional resolution of the identity"  ''Studia Math.'' , '''91'''  (1988)  pp. 141–151</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  M. Fabian,  "Gâteaux differentiability of convex functions and topology" , Wiley–Interscience  (1997)</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  S.P. Gul'ko,  "On the structure of spaces of continuous functions and their complete paracompactness"  ''Russian Math. Surveys'' , '''34''' :  6  (1979)  pp. 36–44</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  K. John,  V. Zizler,  "Smoothness and its equivalents in weakly compactly generated Banach spaces"  ''J. Funct. Anal.'' , '''15'''  (1974)  pp. 1–11</td></tr><tr><td valign="top">[a10]</td> <td valign="top">  W.B. Johnson,  J. Lindenstrauss,  "Some remarks on weakly compactly generated Banach spaces"  ''Israel J. Math.'' , '''17'''  (1974)  pp. 219–230  (Corrigendum: 32 (1979), 382-383)</td></tr><tr><td valign="top">[a11]</td> <td valign="top">  J. Lindenstrauss,  "On nonseparable reflexive Banach spaces"  ''Bull. Amer. Math. Soc.'' , '''72'''  (1966)  pp. 967–970</td></tr><tr><td valign="top">[a12]</td> <td valign="top">  J. Lindenstrauss,  "Weakly compact sets: their topological properties and the Banach spaces they generate"  R.D. Anderson (ed.) , ''Symp. Infinite Dimensional Topol.'' , ''Math. Studies'' , '''69'''  (1972)  pp. 235–273</td></tr><tr><td valign="top">[a13]</td> <td valign="top">  S. Negrepontis,  "Banach spaces and topology"  K. Kunen (ed.)  J.E. Vaughan (ed.) , ''Handbook of set-theoretic topology'' , Elsevier Sci.  (1984)  pp. 1045–1142</td></tr><tr><td valign="top">[a14]</td> <td valign="top">  J. Orihuela,  M. Valdivia,  "Projective generators and resolutions of identity in Banach spaces"  ''Rev. Mat. Univ. Complutense Madr.'' , '''2'''  (1989)  pp. 179–199</td></tr><tr><td valign="top">[a15]</td> <td valign="top">  H.P. Rosenthal,  "The heredity problem for weakly compactly generated Banach spaces"  ''Compositio Math.'' , '''28'''  (1974)  pp. 83–111</td></tr><tr><td valign="top">[a16]</td> <td valign="top">  Ch. Stegall,  "A proof of the theorem of Amir and Lindenstrauss"  ''Israel J. Math.'' , '''68'''  (1989)  pp. 185–192</td></tr><tr><td valign="top">[a17]</td> <td valign="top">  M. Talagrand,  "Sur une conjecture de H.H. Corson"  ''Bull. Sci. Math.'' , '''99'''  (1975)  pp. 211–212</td></tr><tr><td valign="top">[a18]</td> <td valign="top">  S.L. Troyanski,  "On locally uniformly convex and differentiable norms in certain non-separable Banach spaces"  ''Studia Math.'' , '''37'''  (1971)  pp. 173–180</td></tr><tr><td valign="top">[a19]</td> <td valign="top">  L. Vašák,  "On one generalization of weakly compactly generated Banach spaces"  ''Studia Math.'' , '''70'''  (1981)  pp. 11–19</td></tr>
 +
</table>

Latest revision as of 19:53, 23 December 2023

weakly compactly generated space

A Banach space possessing a weakly compact subset $K$ (cf. Weak topology) whose linear span is dense. These spaces have regularity properties not found in a general Banach space. Examples of WCG spaces are all separable spaces (cf. Separable space; pick a sequence $( x _ { n } )$ which is dense in the unit ball and take $ K = \{ x _ { n } / n : n \in \mathbf{N} \} \cup \{ 0 \}$), all reflexive spaces (cf. Reflexive space; take $K$ to be the unit ball), all spaces $L _ { 1 } ( \mu )$ if $\mu$ is a finite or $\sigma$-finite measure (if $\mu$ is finite, take $K = \left\{ f : \int | f | ^ { 2 } \leq 1 \right\}$, i.e., the unit ball of $L _ { 2 } ( \mu )$ considered as a subset of $L _ { 1 } ( \mu )$) and certain spaces $C ( \Omega )$, see below. Counterexamples are the non-separable spaces $\text{l} _ { \infty }$ and $L _ { \infty } [ 0,1 ]$ (here, a weakly compact set can be shown to be norm separable, and hence so is its closed linear span) and ${\bf l}_1 ( \Gamma )$ if $\Gamma$ is uncountable (here, a weakly compact set is even norm compact and thus norm separable as well).

The study of WCG spaces was initiated by D. Amir and J. Lindenstrauss [a1], building on previous work by Lindenstrauss on reflexive spaces [a11]. Their key lemma establishes the existence of a projectional resolution of the identity in a WCG space. Denote the density character of a Banach space $X$ by $\operatorname{dens} (X )$, i.e., $\operatorname{dens} (X )$ is the smallest cardinal number $\kappa$ for which $X$ has a dense subset of cardinality $\kappa$. Let $\mu$ be the smallest ordinal number of cardinality $\operatorname{dens} (X )$, and let $\omega_0$ denote the smallest infinite ordinal number. Then a projectional resolution of the identity is a family of projections $P _ { \alpha }$ on $X$, $\omega _ { 0 } \leq \alpha \leq \mu$, satisfying:

1) $\| P _ { \alpha } \| = 1$ for all $\alpha$;

2) $P _ { \mu } = \operatorname{Id}$ and $P _ { \alpha } P _ { \beta } = P _ { \beta } P _ { \alpha } = P _ { \alpha }$ if $\alpha < \beta$;

3) $\operatorname { dens } ( P _ { \alpha } ( X ) ) \leq \operatorname { card } ( \alpha )$ for all $\alpha$;

4) $\overline { \cup _ { \alpha < \beta } P _ { \alpha } ( X ) } = P _ { \beta } ( X )$ if $\beta$ is a limit ordinal number. It then follows that $\alpha \mapsto P _ { \alpha } ( x )$ is continuous in the order topology of $[ \omega _ { 0 } , \mu ]$ and the norm topology of $X$, for each $x \in X$. Properties of Banach spaces admitting a projectional resolution of the identity can often be investigated by means of transfinite induction arguments over the index set $[ \omega _ { 0 } , \mu ]$, starting from the separable case.

The most important results from [a1] are the following:

a) For a WCG space $X$ there exist a set $\Gamma$ and a continuous linear one-to-one operator from $X$ into $c_0 ( \Gamma )$, the sup-normed space of all functions $f$ on $\Gamma$ such that for each $\varepsilon > 0$ the set of $\gamma$ satisfying $| f ( \gamma ) | \geq \varepsilon$ is finite.

b) There is a continuous linear injection from the dual space $X ^ { * }$ (cf. also Adjoint space) into $c_0 ( \Gamma )$ that is continuous for the weak-${}^{*}$ topology (cf. also Topological vector space) of $X ^ { * }$ and the weak topology of $c_0 ( \Gamma )$. This has important consequences on renormings of WCG spaces (see below) and on the structure of weakly compact sets. A topological space is called an Eberlein compactum if it is homeomorphic to a weakly compact set of some Banach space. Every compact metric space is an Eberlein compactum, but the ordinal space $[ 0 , \omega ]$ is not if $\omega$ is uncountable. It follows from the above that an Eberlein compactum is even homeomorphic to a weakly compact subset of some $c_0 ( \Gamma )$-space and, consequently, Eberlein compacta embed homeomorphically into a "small" subset of $[ 0,1 ] ^ { \Gamma }$; for precision, see below.

c) If $X$ is WCG, then the dual unit ball $B _ { X } *$ in its weak-${}^{*}$ topology is an Eberlein compactum. The Eberlein–Shmul'yan theorem (cf. Banach space) implies that it is weak-${}^{*}$ sequentially compact (i.e., each bounded sequence in $X ^ { * }$ has a weak-${}^{*}$ convergent subsequence).

d) A space of continuous functions $C ( \Omega )$ on a compact Hausdorff space is WCG if and only $\Omega$ is Eberlein compact.

e) Another remarkable property of WCG spaces is the separable complementation property: If $Y$ is a separable subspace of a WCG space $X$, then there exists a separable subspace $Z \subset X$ containing $Y$ that is the range of a contractive projection.

By [a3], a Banach space $X$ is WCG if and only if there is a continuous linear operator from some reflexive space into $X$ having dense range, and an Eberlein compactum is homeomorphic to a weakly compact subset of some reflexive space. An interesting topological property is that the weak topology of a WCG space is a Lindelöf space [a17]. If $X ^ { * }$ is WCG, then every separable subspace of $X$ has a separable dual; in other words, $X$ is an Asplund space.

As for permanence properties of WCG spaces, it is clear that quotients of WCG spaces are again WCG. However, a closed subspace of a WCG space need not be WCG; the first example of this kind was constructed by H.P. Rosenthal [a15]. In certain classes of Banach spaces, the WCG-property is known to be hereditary, for example in WCG spaces with an equivalent Fréchet-differentiable norm [a9] (cf. also Fréchet derivative). An important class of hereditarily WCG spaces are Banach spaces $X$ that are $M$-ideals in $X ^ {**}$, meaning that in the canonical decomposition of $X ^ { * * * }$ into $X ^ { * }$ and $X ^ { \perp }$ the norm is additive: $\| x ^ { * } + x ^ { \perp } \| = \| x ^ { * } \| + \| x ^ { \perp } \|$ [a6]. A Banach space is isomorphic to a subspace of a WCG space if and only if its dual unit ball in the weak-${}^{*}$ topology is an Eberlein compactum [a2]. Turning to duality, it is obvious that the dual of a WCG space need not be WCG (consider $\mathbf{l}_{1}$ with its dual space $\text{l} _ { \infty }$); however, there are also examples of non-WCG spaces with WCG duals [a10]. It is an open problem (1998) whether $X$ has to be WCG whenever $X ^ {**}$ is.

As remarked above, the injection of WCG spaces into $c_0 ( \Gamma )$ leads to renorming results; for example, since $c_0 ( \Gamma )$ has a strictly convex equivalent norm (see Banach space), every WCG space can be renormed to be strictly convex. Likewise, a WCG space $X$ has a Gâteaux-differentiable equivalent norm (cf. Gâteaux derivative), whose corresponding dual norm on $X ^ { * }$ is strictly convex. A much stronger result is due to S. Troyanski [a18]: If $X$ is WCG, then $X$ has an equivalent locally uniformly rotund norm whose dual norm is strictly convex. If $X ^ { * }$ is WCG, then $X$ has an equivalent locally uniformly rotund norm whose dual norm is locally uniformly rotund, too; in particular, this norm is Fréchet differentiable (cf. also Fréchet derivative). Recall that a norm is locally uniformly rotund (or convex) if $\| x _ { n } \| _ { \rightarrow } \| x \|$ and $\| ( x _ { n } + x ) / 2 \| \rightarrow \| x \|$ imply $x _ { n } \rightarrow x$ (see Banach space).

A Markushevich basis of a Banach space $X$ is a system $\{ ( x _ { i } , x _ { i } ^ { * } ) : i \in I \} \subset X \times X ^ { * }$ that is bi-orthogonal ($x _ { i } ^ { * } ( x _ { j } ) = \delta _ { i j }$), fundamental (the linear span of the $x_{i}$ is dense) and total (if $x _ { i } ^ { * } ( x ) = 0$ for all $i$, then $x = 0$; equivalently, the linear span of the $x _ { i } ^ { * }$ is weak-${}^{*}$ dense); it is called shrinking if the linear span of the $x _ { i } ^ { * }$ is even norm dense. Every WCG space admits a Markushevich basis, and a Banach space with a shrinking Markushevich basis is WCG; in fact, such a space is hereditarily WCG.

Generalizations.

In the 1990s, several generalizations of the concept of a WCG space have been investigated (see [a7]). One of these is the notion of a weakly countably determined space (a WCD space), introduced by L. Vašák [a19]. A Banach space $X$ is said to be WCD if there are countably many weak-${}^{*}$ compact subsets $K _ { 1 } , K _ { 2 } , \ldots$ of $X ^ {**}$ such that whenever $x \in X$ and $x ^ { * * } \in X ^ { * * } \backslash X$, then $x \in K _ { n }$ and $x ^ { * * } \notin K _ { n }$ for some $n$. Every WCG space is WCD (consider the doubly indexed countable collection $n K + m ^ { - 1 } B _ { X^{**} } $, where $K$ is a weakly compact set generating $X$), and since the latter class is hereditary, even every subspace of a WCG space is WCD. On the other hand, there are WCD spaces which are not isomorphic to subspaces of any WCG space. Essentially all the results on WCG spaces carry over to this larger class and thus to subspaces of WCG spaces: WCD spaces have projectional resolutions of the identity, they inject into $c_0 ( \Gamma )$, they enjoy the separable complementation property, their weak topology is Lindelöf, they can be renormed with locally uniformly rotund norms, and they have Markushevich bases.

The class of compact spaces that goes with WCD spaces are the Gul'ko compact spaces, or Gul'ko compacta. By definition, $\Omega$ is Gul'ko compact if $C ( \Omega )$ is WCD. This class can also be described topologically. For a set $\Gamma$, let

\begin{equation*} \Sigma ( \Gamma ) : = \left\{ f \in [ 0,1 ] ^ { \Gamma } : \begin{array} { c c } { f ( \gamma ) \neq 0 } \\ { \text { for at most countable many } \gamma } \end{array} \right\} \end{equation*}

equipped with the product topology. Then $\Omega$ is Gul'ko compact if and only if it is homeomorphic to some compact subset $\Omega ^ { \prime }$ of some $\Sigma ( \Gamma )$ so that there exist $\Gamma _ { 1 } , \Gamma _ { 2 } , \ldots \subset \Gamma$ with the property that for every $\gamma _ { 0 } \in \Gamma$ and for every $f \in \Omega ^ { \prime }$ there is an $m \in \mathbf{N}$ such that $\gamma _ { 0 } \in \Gamma _ { m }$ and $\{ \gamma \in \Gamma _ { m } : f ( \gamma ) \neq 0 \}$ is finite. By contrast, $\Omega$ is Eberlein compact if and only if it is homeomorphic to some compact subset $\Omega ^ { \prime }$ of some $\Sigma ( \Gamma )$ so that there exist $\Gamma _ { 1 } , \Gamma _ { 2 } , \ldots \subset \Gamma$ with the property that for every $\gamma _ { 0 } \in \Gamma$ there is an $m \in \mathbf{N}$ such that $\gamma _ { 0 } \in \Gamma _ { m }$ and for every $f \in \Omega ^ { \prime }$ and every $n \in \mathbf N$, the set $\{ \gamma \in \Gamma _ { n } : f ( \gamma ) \neq 0 \}$ is finite. A Banach space is WCD if and only if its dual unit ball in the weak-${}^{*}$ topology is Gul'ko compact. Note that a Corson compact space, or Corson compactum, is, by definition, a compact space homeomorphic to some compact subset of $\Sigma ( \Gamma )$ for a suitable $\Gamma$. It is known that $X$ has a projectional resolution of the identity if $( B _ { X ^ *} , w ^ { * } )$ is Corson compact.

Simpler proofs of the existence of a projectional resolution of the identity in a WCG space (in fact, in a WCD space) have been given by S.P. Gul'ko [a8], J. Orihuela and M. Valdivia [a14], and C. Stegall [a16]. The theory of WCG spaces is surveyed in [a5] and [a12]; for more recent accounts see [a4], [a7] and [a13].

References

[a1] D. Amir, J. Lindenstrauss, "The structure of weakly compact sets in Banach spaces" Ann. of Math. , 88 (1968) pp. 35–46
[a2] Y. Benyamini, M.E. Rudin, M. Wage, "Continuous images of weakly compact subsets of Banach spaces" Pacific J. Math. , 70 (1977) pp. 309–324
[a3] W.J. Davis, T. Figiel, W.B. Johnson, A. Pełczyński, "Factoring weakly compact operators" J. Funct. Anal. , 17 (1974) pp. 311–327
[a4] R. Deville, G. Godefroy, V. Zizler, "Smoothness and renormings in Banach spaces" , Longman (1993)
[a5] J. Diestel, "Geometry of Banach spaces: Selected topics" , Lecture Notes Math. , 485 , Springer (1975)
[a6] M. Fabian, G. Godefroy, "The dual of every Asplund space admits a projectional resolution of the identity" Studia Math. , 91 (1988) pp. 141–151
[a7] M. Fabian, "Gâteaux differentiability of convex functions and topology" , Wiley–Interscience (1997)
[a8] S.P. Gul'ko, "On the structure of spaces of continuous functions and their complete paracompactness" Russian Math. Surveys , 34 : 6 (1979) pp. 36–44
[a9] K. John, V. Zizler, "Smoothness and its equivalents in weakly compactly generated Banach spaces" J. Funct. Anal. , 15 (1974) pp. 1–11
[a10] W.B. Johnson, J. Lindenstrauss, "Some remarks on weakly compactly generated Banach spaces" Israel J. Math. , 17 (1974) pp. 219–230 (Corrigendum: 32 (1979), 382-383)
[a11] J. Lindenstrauss, "On nonseparable reflexive Banach spaces" Bull. Amer. Math. Soc. , 72 (1966) pp. 967–970
[a12] J. Lindenstrauss, "Weakly compact sets: their topological properties and the Banach spaces they generate" R.D. Anderson (ed.) , Symp. Infinite Dimensional Topol. , Math. Studies , 69 (1972) pp. 235–273
[a13] S. Negrepontis, "Banach spaces and topology" K. Kunen (ed.) J.E. Vaughan (ed.) , Handbook of set-theoretic topology , Elsevier Sci. (1984) pp. 1045–1142
[a14] J. Orihuela, M. Valdivia, "Projective generators and resolutions of identity in Banach spaces" Rev. Mat. Univ. Complutense Madr. , 2 (1989) pp. 179–199
[a15] H.P. Rosenthal, "The heredity problem for weakly compactly generated Banach spaces" Compositio Math. , 28 (1974) pp. 83–111
[a16] Ch. Stegall, "A proof of the theorem of Amir and Lindenstrauss" Israel J. Math. , 68 (1989) pp. 185–192
[a17] M. Talagrand, "Sur une conjecture de H.H. Corson" Bull. Sci. Math. , 99 (1975) pp. 211–212
[a18] S.L. Troyanski, "On locally uniformly convex and differentiable norms in certain non-separable Banach spaces" Studia Math. , 37 (1971) pp. 173–180
[a19] L. Vašák, "On one generalization of weakly compactly generated Banach spaces" Studia Math. , 70 (1981) pp. 11–19
How to Cite This Entry:
WCG space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=WCG_space&oldid=17735
This article was adapted from an original article by D. Werner (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article