Namespaces
Variants
Actions

Difference between revisions of "Verbal subgroup"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
The subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v0965801.png" /> of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v0965802.png" /> generated by all possible values of all words (cf. [[Word|Word]]) of some set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v0965803.png" />, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v0965804.png" /> run through the entire group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v0965805.png" /> independently of each other. A verbal subgroup is normal; the congruence defined on the group by a verbal subgroup is a [[Verbal congruence|verbal congruence]] (see also [[Algebraic systems, variety of|Algebraic systems, variety of]]).
+
<!--
 +
v0965801.png
 +
$#A+1 = 27 n = 0
 +
$#C+1 = 27 : ~/encyclopedia/old_files/data/V096/V.0906580 Verbal subgroup
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Examples of verbal subgroups: 1) the commutator subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v0965806.png" /> of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v0965807.png" /> defined by the word <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v0965808.png" />; 2) the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v0965809.png" />-th commutator subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658010.png" />; 3) the terms of the lower central series
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658011.png" /></td> </tr></table>
+
The subgroup  $  V( G) $
 +
of a group  $  G $
 +
generated by all possible values of all words (cf. [[Word|Word]]) of some set  $  V = \{ {f _  \nu  ( x _ {1} \dots x _ {n _  \nu  } ) } : {\nu \in I } \} $,
 +
when  $  x _ {1} , x _ {2} \dots $
 +
run through the entire group  $  G $
 +
independently of each other. A verbal subgroup is normal; the congruence defined on the group by a verbal subgroup is a [[Verbal congruence|verbal congruence]] (see also [[Algebraic systems, variety of|Algebraic systems, variety of]]).
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658012.png" /> is the verbal subgroup defined by the commutator
+
Examples of verbal subgroups: 1) the commutator subgroup $  G  ^  \prime  $
 +
of a group  $  G $
 +
defined by the word  $  [ x, y] = x  ^ {-} 1 y  ^ {-} 1 xy $;
 +
2) the  $  n $-
 +
th commutator subgroup  $  G  ^ {(} n) = {( G  ^ {(} n- 1) ) }  ^  \prime  $;
 +
3) the terms of the lower central series
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658013.png" /></td> </tr></table>
+
$$
 +
\Gamma _ {1} ( G)  = G  \supseteq  \Gamma _ {2} ( G)  \supseteq \dots
 +
\supseteq  \Gamma _ {n} ( G)  \supseteq \dots ,
 +
$$
  
4) the power subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658014.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658015.png" /> defined by the words <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658016.png" />.
+
where  $  \Gamma _ {n} ( G) $
 +
is the verbal subgroup defined by the commutator
  
The equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658017.png" /> is valid for any homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658018.png" />. In particular, every verbal subgroup is a [[Fully-characteristic subgroup|fully-characteristic subgroup]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658019.png" />. The converse is true for free groups, but not in general: The intersection of two verbal subgroups may not be a verbal subgroup.
+
$$
 +
[ x _ {1} \dots x _ {n} ]  = \
 +
[[ x _ {1} \dots x _ {n-} 1 ], x _ {n} ] ;
 +
$$
  
Verbal subgroups of the free group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658020.png" /> of countable rank are especially important. They constitute a (modular) sublattice of the lattice of all its subgroups. Verbal subgroups are  "monotone" : If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658022.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658023.png" /> means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658024.png" /> is a normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658025.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658026.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096580/v09658027.png" />.
+
4) the power subgroup  $  G  ^ {n} $
 +
of the group $  G $
 +
defined by the words  $  x  ^ {n} $.
 +
 
 +
The equality  $  V( G) \phi = V( G \phi ) $
 +
is valid for any homomorphism  $  \phi $.  
 +
In particular, every verbal subgroup is a [[Fully-characteristic subgroup|fully-characteristic subgroup]] in  $  G $.  
 +
The converse is true for free groups, but not in general: The intersection of two verbal subgroups may not be a verbal subgroup.
 +
 
 +
Verbal subgroups of the free group  $  X $
 +
of countable rank are especially important. They constitute a (modular) sublattice of the lattice of all its subgroups. Verbal subgroups are  "monotone" : If $  R riangle\left X \right .$,  
 +
$  S riangle\left X \right .$(
 +
here $  R riangle\left X \right .$
 +
means that $  R $
 +
is a normal subgroup of $  X $)  
 +
and $  R \subset  S $,  
 +
then $  V( R) \subset  V( S) $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.G. Kurosh,  "The theory of groups" , '''1–2''' , Chelsea  (1955–1956)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Neumann,  "Varieties of groups" , Springer  (1967)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.G. Kurosh,  "The theory of groups" , '''1–2''' , Chelsea  (1955–1956)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Neumann,  "Varieties of groups" , Springer  (1967)</TD></TR></table>

Revision as of 08:28, 6 June 2020


The subgroup $ V( G) $ of a group $ G $ generated by all possible values of all words (cf. Word) of some set $ V = \{ {f _ \nu ( x _ {1} \dots x _ {n _ \nu } ) } : {\nu \in I } \} $, when $ x _ {1} , x _ {2} \dots $ run through the entire group $ G $ independently of each other. A verbal subgroup is normal; the congruence defined on the group by a verbal subgroup is a verbal congruence (see also Algebraic systems, variety of).

Examples of verbal subgroups: 1) the commutator subgroup $ G ^ \prime $ of a group $ G $ defined by the word $ [ x, y] = x ^ {-} 1 y ^ {-} 1 xy $; 2) the $ n $- th commutator subgroup $ G ^ {(} n) = {( G ^ {(} n- 1) ) } ^ \prime $; 3) the terms of the lower central series

$$ \Gamma _ {1} ( G) = G \supseteq \Gamma _ {2} ( G) \supseteq \dots \supseteq \Gamma _ {n} ( G) \supseteq \dots , $$

where $ \Gamma _ {n} ( G) $ is the verbal subgroup defined by the commutator

$$ [ x _ {1} \dots x _ {n} ] = \ [[ x _ {1} \dots x _ {n-} 1 ], x _ {n} ] ; $$

4) the power subgroup $ G ^ {n} $ of the group $ G $ defined by the words $ x ^ {n} $.

The equality $ V( G) \phi = V( G \phi ) $ is valid for any homomorphism $ \phi $. In particular, every verbal subgroup is a fully-characteristic subgroup in $ G $. The converse is true for free groups, but not in general: The intersection of two verbal subgroups may not be a verbal subgroup.

Verbal subgroups of the free group $ X $ of countable rank are especially important. They constitute a (modular) sublattice of the lattice of all its subgroups. Verbal subgroups are "monotone" : If $ R riangle\left X \right .$, $ S riangle\left X \right .$( here $ R riangle\left X \right .$ means that $ R $ is a normal subgroup of $ X $) and $ R \subset S $, then $ V( R) \subset V( S) $.

References

[1] A.G. Kurosh, "The theory of groups" , 1–2 , Chelsea (1955–1956) (Translated from Russian)
[2] H. Neumann, "Varieties of groups" , Springer (1967)
How to Cite This Entry:
Verbal subgroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Verbal_subgroup&oldid=17324
This article was adapted from an original article by O.N. Golovin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article