Namespaces
Variants
Actions

Difference between revisions of "Variety in a category"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A notion generalizing that of a [[Variety of universal algebras|variety of universal algebras]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v0962801.png" /> be a [[Bicategory(2)|bicategory]] with products. A [[Full subcategory|full subcategory]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v0962802.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v0962803.png" /> is called a variety if it satisfies the following conditions: a) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v0962804.png" /> is an admissible monomorphism and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v0962805.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v0962806.png" />; b) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v0962807.png" /> is an admissible epimorphism and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v0962808.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v0962809.png" />; c) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628011.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628012.png" />.
+
<!--
 +
v0962801.png
 +
$#A+1 = 27 n = 0
 +
$#C+1 = 27 : ~/encyclopedia/old_files/data/V096/V.0906280 Variety in a category
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628013.png" /> is well-powered, that is, the admissible subobjects of any object form a set, then every variety is a [[Reflective subcategory|reflective subcategory]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628014.png" />. This means that the inclusion functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628015.png" /> has a left adjoint <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628016.png" />. The unit of this adjunction, the natural transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628017.png" />, has the property that for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628018.png" /> the morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628019.png" /> is an admissible epimorphism. In many important cases the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628020.png" /> turns out to be right-exact, that is, it transforms the cokernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628021.png" /> of a pair of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628022.png" /> into the cokernel of the pair of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628023.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628024.png" /> is a [[Kernel pair|kernel pair]] of the morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628025.png" />. Moreover, right exactness and the presence of the natural transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628026.png" /> are characteristic properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096280/v09628027.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A notion generalizing that of a [[Variety of universal algebras|variety of universal algebras]]. Let  $  \mathfrak K $
 +
be a [[Bicategory(2)|bicategory]] with products. A [[Full subcategory|full subcategory]]  $  \mathfrak M $
 +
of  $  \mathfrak K $
 +
is called a variety if it satisfies the following conditions: a) if  $  \mu :  A \rightarrow B $
 +
is an admissible monomorphism and  $  B \in  \mathop{\rm Ob}  \mathfrak M $,
 +
then  $  A \in  \mathop{\rm Ob}  \mathfrak M $;
 +
b) if  $  \nu :  A \rightarrow B $
 +
is an admissible epimorphism and  $  A \in  \mathop{\rm Ob}  \mathfrak M $,
 +
then  $  B \in  \mathop{\rm Ob}  \mathfrak M $;
 +
c) if  $  A _ {i} \in  \mathop{\rm Ob}  \mathfrak M $,
 +
$  i \in I $,
 +
then  $  A = \prod _ {i \in I }  A _ {i} \in  \mathop{\rm Ob}  \mathfrak M $.
 +
 
 +
If  $  \mathfrak K $
 +
is a [[well-powered category]], that is, the admissible subobjects of any object form a set, then every variety is a [[reflective subcategory]] of $  \mathfrak K $.  
 +
This means that the inclusion functor $  I : \mathfrak M \rightarrow \mathfrak K $
 +
has a left adjoint $  S : \mathfrak K \rightarrow \mathfrak M $.  
 +
The unit of this adjunction, the natural transformation $  \eta :  I _ {\mathfrak K }  \rightarrow T = S I $,  
 +
has the property that for each $  a \in  \mathop{\rm Ob}  {\mathfrak K } $
 +
the morphism $  \eta _ {A} : A \rightarrow T ( A) $
 +
is an admissible epimorphism. In many important cases the functor $  T $
 +
turns out to be right-exact, that is, it transforms the cokernel $  \nu $
 +
of a pair of morphisms $  \alpha , \beta : A \rightarrow B $
 +
into the cokernel of the pair of morphisms $  T ( \alpha ) , T ( \beta ) $,  
 +
if $  ( \alpha , \beta ) $
 +
is a [[Kernel pair|kernel pair]] of the morphism $  \nu $.  
 +
Moreover, right exactness and the presence of the natural transformation $  \eta : I \rightarrow T $
 +
are characteristic properties of $  T $.
  
 
A variety inherits many properties of the ambient category. It has the structure of a bicategory, and is complete if the initial category is complete.
 
A variety inherits many properties of the ambient category. It has the structure of a bicategory, and is complete if the initial category is complete.
Line 9: Line 46:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.Sh. Tsalenko,  E.G. Shul'geifer,  "Fundamentals of category theory" , Moscow  (1974)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Fröhlich,  "On groups over a d.g. near ring II. Categories and functors"  ''Quart. J. Math.'' , '''11'''  (1960)  pp. 211–228</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.Sh. Tsalenko,  E.G. Shul'geifer,  "Fundamentals of category theory" , Moscow  (1974)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Fröhlich,  "On groups over a d.g. near ring II. Categories and functors"  ''Quart. J. Math.'' , '''11'''  (1960)  pp. 211–228</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
In a [[Topos|topos]], one also considers exponential varieties [[#References|[a1]]], which are full subcategories closed under arbitrary subobjects, products and power-objects. Such a subcategory is necessarily closed under quotients as well; it is a topos, and its inclusion functor has adjoints on both sides.
+
In a [[topos]], one also considers exponential varieties [[#References|[a1]]], which are full subcategories closed under arbitrary subobjects, products and power-objects. Such a subcategory is necessarily closed under quotients as well; it is a topos, and its inclusion functor has adjoints on both sides.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.J. Freyd,  "All topoi are localic, or why permutation models prevail"  ''J. Pure Appl. Alg.'' , '''46'''  (1987)  pp. 49–58</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.J. Freyd,  "All topoi are localic, or why permutation models prevail"  ''J. Pure Appl. Alg.'' , '''46'''  (1987)  pp. 49–58</TD></TR></table>

Latest revision as of 08:28, 6 June 2020


A notion generalizing that of a variety of universal algebras. Let $ \mathfrak K $ be a bicategory with products. A full subcategory $ \mathfrak M $ of $ \mathfrak K $ is called a variety if it satisfies the following conditions: a) if $ \mu : A \rightarrow B $ is an admissible monomorphism and $ B \in \mathop{\rm Ob} \mathfrak M $, then $ A \in \mathop{\rm Ob} \mathfrak M $; b) if $ \nu : A \rightarrow B $ is an admissible epimorphism and $ A \in \mathop{\rm Ob} \mathfrak M $, then $ B \in \mathop{\rm Ob} \mathfrak M $; c) if $ A _ {i} \in \mathop{\rm Ob} \mathfrak M $, $ i \in I $, then $ A = \prod _ {i \in I } A _ {i} \in \mathop{\rm Ob} \mathfrak M $.

If $ \mathfrak K $ is a well-powered category, that is, the admissible subobjects of any object form a set, then every variety is a reflective subcategory of $ \mathfrak K $. This means that the inclusion functor $ I : \mathfrak M \rightarrow \mathfrak K $ has a left adjoint $ S : \mathfrak K \rightarrow \mathfrak M $. The unit of this adjunction, the natural transformation $ \eta : I _ {\mathfrak K } \rightarrow T = S I $, has the property that for each $ a \in \mathop{\rm Ob} {\mathfrak K } $ the morphism $ \eta _ {A} : A \rightarrow T ( A) $ is an admissible epimorphism. In many important cases the functor $ T $ turns out to be right-exact, that is, it transforms the cokernel $ \nu $ of a pair of morphisms $ \alpha , \beta : A \rightarrow B $ into the cokernel of the pair of morphisms $ T ( \alpha ) , T ( \beta ) $, if $ ( \alpha , \beta ) $ is a kernel pair of the morphism $ \nu $. Moreover, right exactness and the presence of the natural transformation $ \eta : I \rightarrow T $ are characteristic properties of $ T $.

A variety inherits many properties of the ambient category. It has the structure of a bicategory, and is complete if the initial category is complete.

In categories with normal co-images, as in the case of varieties of groups, it is possible to define a product of varieties. The structure of the resultant groupoid of varieties has been studied only in a number of special cases.

References

[1] M.Sh. Tsalenko, E.G. Shul'geifer, "Fundamentals of category theory" , Moscow (1974) (In Russian)
[2] A. Fröhlich, "On groups over a d.g. near ring II. Categories and functors" Quart. J. Math. , 11 (1960) pp. 211–228

Comments

In a topos, one also considers exponential varieties [a1], which are full subcategories closed under arbitrary subobjects, products and power-objects. Such a subcategory is necessarily closed under quotients as well; it is a topos, and its inclusion functor has adjoints on both sides.

References

[a1] P.J. Freyd, "All topoi are localic, or why permutation models prevail" J. Pure Appl. Alg. , 46 (1987) pp. 49–58
How to Cite This Entry:
Variety in a category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Variety_in_a_category&oldid=11613
This article was adapted from an original article by M.Sh. Tsalenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article