Namespaces
Variants
Actions

Difference between revisions of "Unramified ideal"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (link)
Line 7: Line 7:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u0957907.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u0957907.png" /></td> </tr></table>
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u0957908.png" />. More accurately, such an ideal is called absolutely unramified. In general, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u0957909.png" /> be a [[Dedekind ring|Dedekind ring]] with field of fractions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579010.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579011.png" /> be a finite extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579012.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579013.png" /> be the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579014.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579015.png" /> (cf. [[Integral extension of a ring|Integral extension of a ring]]). A prime ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579016.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579017.png" /> lying over an ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579018.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579019.png" /> is unramified in the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579020.png" /> if
+
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u0957908.png" />. More accurately, such an ideal is called absolutely unramified. In general, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u0957909.png" /> be a [[Dedekind ring|Dedekind ring]] with [[field of fractions]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579010.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579011.png" /> be a finite extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579012.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579013.png" /> be the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579014.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579015.png" /> (cf. [[Integral extension of a ring|Integral extension of a ring]]). A prime ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579016.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579017.png" /> lying over an ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579018.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579019.png" /> is unramified in the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579020.png" /> if
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579021.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095790/u09579021.png" /></td> </tr></table>

Revision as of 21:20, 28 November 2014

A prime ideal of an algebraic number field (cf. also Algebraic number; Number field) lying over a prime number such that the principal ideal has in a product decomposition into prime ideals of the form

where

and . More accurately, such an ideal is called absolutely unramified. In general, let be a Dedekind ring with field of fractions , let be a finite extension of and let be the integral closure of in (cf. Integral extension of a ring). A prime ideal of lying over an ideal of is unramified in the extension if

where are pairwise distinct prime ideals of , and . If all ideals are unramified, then one occasionally says that remains unramified in . For a Galois extension , an ideal of is unramified if and only if the decomposition group of in the Galois group is the same as the Galois group of the extension of the residue class field . In any finite extension of algebraic number fields all ideals except finitely many are unramified.

References

[1] Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1966) (Translated from Russian) (German translation: Birkhäuser, 1966)
[2] S. Lang, "Algebraic number theory" , Addison-Wesley (1970)
[3] J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1986)
How to Cite This Entry:
Unramified ideal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unramified_ideal&oldid=14372
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article