Namespaces
Variants
Actions

Difference between revisions of "Skorokhod integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An extension of the Itô stochastic integral (cf. [[Stochastic integral|Stochastic integral]]) introduced by A.V. Skorokhod in [[#References|[a8]]] in order to integrate stochastic processes that are not adapted to Brownian motion. Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s1101701.png" /> is a [[Brownian motion|Brownian motion]] and consider a [[Stochastic process|stochastic process]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s1101702.png" />, measurable with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s1101703.png" />, which is not necessarily adapted (cf. also [[Optional random process|Optional random process]]) and satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s1101704.png" />. The process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s1101705.png" /> can be developed into a sum of orthogonal multiple stochastic integrals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s1101706.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s1101707.png" /> is symmetric in the first <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s1101708.png" /> variables (see [[#References|[a2]]]). The Skorokhod integral of the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s1101709.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s11017010.png" />, is defined by
+
<!--
 +
s1101701.png
 +
$#A+1 = 18 n = 0
 +
$#C+1 = 18 : ~/encyclopedia/old_files/data/S110/S.1100170 Skorokhod integral
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s11017011.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
provided the above series converges in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s11017012.png" />. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s11017013.png" /> denotes the symmetrization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s11017014.png" /> in all its variables.
+
An extension of the Itô stochastic integral (cf. [[Stochastic integral|Stochastic integral]]) introduced by A.V. Skorokhod in [[#References|[a8]]] in order to integrate stochastic processes that are not adapted to Brownian motion. Suppose that  $  W = \{ {W _ {t} } : {t \in [ 0,1 ] } \} $
 +
is a [[Brownian motion|Brownian motion]] and consider a [[Stochastic process|stochastic process]]  $  u = \{ {u _ {t} } : {t \in [ 0,1 ] } \} $,
 +
measurable with respect to  $  W $,
 +
which is not necessarily adapted (cf. also [[Optional random process|Optional random process]]) and satisfies  $  {\mathsf E} \int _ {0}  ^ {1} {u _ {t}  ^ {2} }  {dt } < \infty $.  
 +
The process  $  u $
 +
can be developed into a sum of orthogonal multiple stochastic integrals  $  u _ {t} = \sum _ {n = 0 }  ^  \infty  I _ {n} ( f _ {n} ( \cdot,t ) ) $,
 +
where  $  f _ {n} \in L _ {2} ( [ 0,1 ] ^ {n + 1 } ) $
 +
is symmetric in the first  $  n $
 +
variables (see [[#References|[a2]]]). The Skorokhod integral of the process  $  u $,
 +
denoted by  $  \delta ( u ) = \int _ {0}  ^ {1} {u _ {t} }  {dW _ {t} } $,
 +
is defined by
  
In [[#References|[a1]]] it is proved that the Skorokhod integral coincides with the adjoint of the derivative operator on the Wiener space (cf. also [[Wiener space, abstract|Wiener space, abstract]]). Starting from this result, the techniques of stochastic calculus of variations on the Wiener space (see [[#References|[a4]]]) have made it possible to develop a stochastic calculus for the Skorokhod integral (see [[#References|[a6]]]) which extends the classical Itô calculus introduced in the 1940s. The Skorokhod integral possesses most of the main properties of the Itô stochastic integral. For instance, under suitable hypotheses on the integrand <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s11017015.png" />, the Skorokhod integral is local, the indefinite Skorokhod integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s11017016.png" /> is continuous and possesses a quadratic variation equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s11017017.png" />, and a change-of-variables formula holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110170/s11017018.png" /> (see [[#References|[a6]]]). Multiple Skorokhod integrals are defined in [[#References|[a7]]], and the Skorokhod integral is studied in [[#References|[a3]]] from the point of view of the [[White noise|white noise]] analysis.
+
$$
 +
\delta ( u ) = \sum _ {n = 0 } ^  \infty  I _ {n + 1 }  ( {\widetilde{f}  } _ {n} ) ,
 +
$$
 +
 
 +
provided the above series converges in  $  L _ {2} ( \Omega ) $.
 +
Here,  $  {\widetilde{f}  } _ {n} $
 +
denotes the symmetrization of  $  f _ {n} $
 +
in all its variables.
 +
 
 +
In [[#References|[a1]]] it is proved that the Skorokhod integral coincides with the adjoint of the derivative operator on the Wiener space (cf. also [[Wiener space, abstract|Wiener space, abstract]]). Starting from this result, the techniques of stochastic calculus of variations on the Wiener space (see [[#References|[a4]]]) have made it possible to develop a stochastic calculus for the Skorokhod integral (see [[#References|[a6]]]) which extends the classical Itô calculus introduced in the 1940s. The Skorokhod integral possesses most of the main properties of the Itô stochastic integral. For instance, under suitable hypotheses on the integrand $  u $,  
 +
the Skorokhod integral is local, the indefinite Skorokhod integral $  \int _ {0}  ^ {t} {u _ {s} }  {dW _ {s} } $
 +
is continuous and possesses a quadratic variation equal to $  \int _ {0}  ^ {t} {u _ {s}  ^ {2} }  {ds } $,  
 +
and a change-of-variables formula holds for $  F ( \int _ {0}  ^ {t} {u _ {s} }  {dW _ {s} } ) $(
 +
see [[#References|[a6]]]). Multiple Skorokhod integrals are defined in [[#References|[a7]]], and the Skorokhod integral is studied in [[#References|[a3]]] from the point of view of the [[White noise|white noise]] analysis.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B. Gaveau,  P. Trauber,  "L'intégrale stochastique comme opérateur de divergence dans l'espace fonctionnel"  ''J. Funct. Anal.'' , '''46'''  (1982)  pp. 230–238</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Itô,  "Multiple Wiener integral"  ''J. Math. Soc. Japan'' , '''3'''  (1951)  pp. 157–169</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H.H. Kuo,  A. Russek,  "White noise approach to stochastic integration"  ''J. Multivariate Analysis'' , '''24'''  (1988)  pp. 218–236</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  P. Malliavin,  "Stochastic calculus of variations and hypoelliptic operators" , ''Proc. Inter. Symp. on Stoch. Diff. Equations, Kyoto 1976'' , Wiley  (1978)  pp. 195–263</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  D. Nualart,  "The Malliavin calculus and related topics" , Springer  (1995)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  D. Nualart,  E. Pardoux,  "Stochastic calculus with anticipating integrands"  ''Probab. Th. Rel. Fields'' , '''78'''  (1988)  pp. 535–581</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  D. Nualart,  M. Zakai,  "Generalized multiple stochastic integrals and the representation of Wiener functionals"  ''Stochastics'' , '''23'''  (1988)  pp. 311–330</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  A.V. Skorokhod,  "On a generalization of a stochastic integral"  ''Th. Probab. Appl.'' , '''20'''  (1975)  pp. 219–233</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B. Gaveau,  P. Trauber,  "L'intégrale stochastique comme opérateur de divergence dans l'espace fonctionnel"  ''J. Funct. Anal.'' , '''46'''  (1982)  pp. 230–238</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Itô,  "Multiple Wiener integral"  ''J. Math. Soc. Japan'' , '''3'''  (1951)  pp. 157–169</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H.H. Kuo,  A. Russek,  "White noise approach to stochastic integration"  ''J. Multivariate Analysis'' , '''24'''  (1988)  pp. 218–236</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  P. Malliavin,  "Stochastic calculus of variations and hypoelliptic operators" , ''Proc. Inter. Symp. on Stoch. Diff. Equations, Kyoto 1976'' , Wiley  (1978)  pp. 195–263</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  D. Nualart,  "The Malliavin calculus and related topics" , Springer  (1995)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  D. Nualart,  E. Pardoux,  "Stochastic calculus with anticipating integrands"  ''Probab. Th. Rel. Fields'' , '''78'''  (1988)  pp. 535–581</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  D. Nualart,  M. Zakai,  "Generalized multiple stochastic integrals and the representation of Wiener functionals"  ''Stochastics'' , '''23'''  (1988)  pp. 311–330</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  A.V. Skorokhod,  "On a generalization of a stochastic integral"  ''Th. Probab. Appl.'' , '''20'''  (1975)  pp. 219–233</TD></TR></table>

Latest revision as of 08:14, 6 June 2020


An extension of the Itô stochastic integral (cf. Stochastic integral) introduced by A.V. Skorokhod in [a8] in order to integrate stochastic processes that are not adapted to Brownian motion. Suppose that $ W = \{ {W _ {t} } : {t \in [ 0,1 ] } \} $ is a Brownian motion and consider a stochastic process $ u = \{ {u _ {t} } : {t \in [ 0,1 ] } \} $, measurable with respect to $ W $, which is not necessarily adapted (cf. also Optional random process) and satisfies $ {\mathsf E} \int _ {0} ^ {1} {u _ {t} ^ {2} } {dt } < \infty $. The process $ u $ can be developed into a sum of orthogonal multiple stochastic integrals $ u _ {t} = \sum _ {n = 0 } ^ \infty I _ {n} ( f _ {n} ( \cdot,t ) ) $, where $ f _ {n} \in L _ {2} ( [ 0,1 ] ^ {n + 1 } ) $ is symmetric in the first $ n $ variables (see [a2]). The Skorokhod integral of the process $ u $, denoted by $ \delta ( u ) = \int _ {0} ^ {1} {u _ {t} } {dW _ {t} } $, is defined by

$$ \delta ( u ) = \sum _ {n = 0 } ^ \infty I _ {n + 1 } ( {\widetilde{f} } _ {n} ) , $$

provided the above series converges in $ L _ {2} ( \Omega ) $. Here, $ {\widetilde{f} } _ {n} $ denotes the symmetrization of $ f _ {n} $ in all its variables.

In [a1] it is proved that the Skorokhod integral coincides with the adjoint of the derivative operator on the Wiener space (cf. also Wiener space, abstract). Starting from this result, the techniques of stochastic calculus of variations on the Wiener space (see [a4]) have made it possible to develop a stochastic calculus for the Skorokhod integral (see [a6]) which extends the classical Itô calculus introduced in the 1940s. The Skorokhod integral possesses most of the main properties of the Itô stochastic integral. For instance, under suitable hypotheses on the integrand $ u $, the Skorokhod integral is local, the indefinite Skorokhod integral $ \int _ {0} ^ {t} {u _ {s} } {dW _ {s} } $ is continuous and possesses a quadratic variation equal to $ \int _ {0} ^ {t} {u _ {s} ^ {2} } {ds } $, and a change-of-variables formula holds for $ F ( \int _ {0} ^ {t} {u _ {s} } {dW _ {s} } ) $( see [a6]). Multiple Skorokhod integrals are defined in [a7], and the Skorokhod integral is studied in [a3] from the point of view of the white noise analysis.

References

[a1] B. Gaveau, P. Trauber, "L'intégrale stochastique comme opérateur de divergence dans l'espace fonctionnel" J. Funct. Anal. , 46 (1982) pp. 230–238
[a2] K. Itô, "Multiple Wiener integral" J. Math. Soc. Japan , 3 (1951) pp. 157–169
[a3] H.H. Kuo, A. Russek, "White noise approach to stochastic integration" J. Multivariate Analysis , 24 (1988) pp. 218–236
[a4] P. Malliavin, "Stochastic calculus of variations and hypoelliptic operators" , Proc. Inter. Symp. on Stoch. Diff. Equations, Kyoto 1976 , Wiley (1978) pp. 195–263
[a5] D. Nualart, "The Malliavin calculus and related topics" , Springer (1995)
[a6] D. Nualart, E. Pardoux, "Stochastic calculus with anticipating integrands" Probab. Th. Rel. Fields , 78 (1988) pp. 535–581
[a7] D. Nualart, M. Zakai, "Generalized multiple stochastic integrals and the representation of Wiener functionals" Stochastics , 23 (1988) pp. 311–330
[a8] A.V. Skorokhod, "On a generalization of a stochastic integral" Th. Probab. Appl. , 20 (1975) pp. 219–233
How to Cite This Entry:
Skorokhod integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Skorokhod_integral&oldid=16594
This article was adapted from an original article by D. Nualart (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article