Namespaces
Variants
Actions

Difference between revisions of "Simple-iteration method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A method for approximately solving a system of linear algebraic equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s0852501.png" /> that can be transformed to the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s0852502.png" /> and whose solution is looked for as the limit of a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s0852503.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s0852504.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s0852505.png" /> is an initial approximation. In order that the simple-iteration method converges for any initial approximation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s0852506.png" /> it is necessary and sufficient that all eigenvalues of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s0852507.png" /> are less than one in modulus; it is sufficient that some norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s0852508.png" /> is less than one. If in some norm, compatible with the norm of a vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s0852509.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525010.png" /> satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525011.png" />, then the simple-iteration method converges at the rate of a geometric series and the estimate
+
<!--
 +
s0852501.png
 +
$#A+1 = 42 n = 0
 +
$#C+1 = 42 : ~/encyclopedia/old_files/data/S085/S.0805250 Simple\AAhiteration method
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525012.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A method for approximately solving a system of linear algebraic equations  $  Ax = b $
 +
that can be transformed to the form  $  x = Bx + c $
 +
and whose solution is looked for as the limit of a sequence  $  x  ^ {k+} 1 = B x  ^ {k} + c $,
 +
$  k = 0 , 1 \dots $
 +
where  $  x  ^ {0} $
 +
is an initial approximation. In order that the simple-iteration method converges for any initial approximation  $  x  ^ {0} $
 +
it is necessary and sufficient that all eigenvalues of  $  B $
 +
are less than one in modulus; it is sufficient that some norm of  $  B $
 +
is less than one. If in some norm, compatible with the norm of a vector  $  x $,
 +
$  B $
 +
satisfies  $  \| B \| \leq  \rho < 1 $,
 +
then the simple-iteration method converges at the rate of a geometric series and the estimate
 +
 
 +
$$
 +
\| x  ^ {m} - x \|  \leq  \rho  ^ {m} \| x  ^ {0} - x \|
 +
$$
  
 
holds for its error.
 
holds for its error.
  
In the case of a cubic, octahedral or spherical vector norm, the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525013.png" /> is fulfilled if
+
In the case of a cubic, octahedral or spherical vector norm, the condition $  \| B \| \leq  \rho $
 +
is fulfilled if
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525015.png" />;
+
1) $  \sum _ {j=} 1  ^ {n} | b _ {ij} | \leq  \rho $,  
 +
$  i = 1 \dots n $;
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525017.png" />;
+
2) $  \sum _ {i=} 1  ^ {n} | b _ {ij} | \leq  \rho $,  
 +
$  j = 1 \dots n $;
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525018.png" />.
+
3) $  \sum _ {i , j = 1 }  ^ {n} b _ {ij}  ^ {2} \leq  \rho  ^ {2} $.
  
The simplest version of the method corresponds to the case when one takes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525020.png" /> is the identity matrix, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525021.png" />. If all diagonal entries of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525022.png" /> are non-zero, then, choosing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525024.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525025.png" /> is the diagonal matrix with as diagonal entries those of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525026.png" />, one obtains the [[Jacobi method|Jacobi method]] or the method of simultaneous displacement.
+
The simplest version of the method corresponds to the case when one takes $  I - A $,  
 +
where $  I $
 +
is the identity matrix, for $  B $.  
 +
If all diagonal entries of $  A $
 +
are non-zero, then, choosing $  b = D  ^ {-} 1 ( D - A ) $
 +
and $  c = D  ^ {-} 1 b $,  
 +
where $  D $
 +
is the diagonal matrix with as diagonal entries those of $  A $,  
 +
one obtains the [[Jacobi method|Jacobi method]] or the method of simultaneous displacement.
  
A particular case of the simple-iteration method is the method with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525028.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525029.png" /> is an iteration parameter, chosen from the condition that the norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525030.png" /> is minimal with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525031.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525033.png" /> are the minimal and maximal eigenvalues of a symmetric positive-definite matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525035.png" />, then one has for the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525036.png" /> in the spherical norm the estimate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525037.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525038.png" />.
+
A particular case of the simple-iteration method is the method with $  B = I - \tau A $
 +
and $  c = \tau b $,  
 +
where $  \tau $
 +
is an iteration parameter, chosen from the condition that the norm of $  I - \tau A $
 +
is minimal with respect to $  \tau $.  
 +
If $  \gamma _ {1} $
 +
and $  \gamma _ {2} $
 +
are the minimal and maximal eigenvalues of a symmetric positive-definite matrix $  A $
 +
and $  \tau = 2 / ( \gamma _ {1} + \gamma _ {2} ) $,  
 +
then one has for the matrix $  B $
 +
in the spherical norm the estimate $  \| B \| \leq  \rho $,  
 +
with $  \rho = ( \gamma _ {2} - \gamma _ {1} ) / ( \gamma _ {2} + \gamma _ {1} ) < 1 $.
  
 
For a system of non-linear algebraic equations
 
For a system of non-linear algebraic equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525039.png" /></td> </tr></table>
+
$$
 +
\phi _ {i} ( x)  = 0 ,\  1 \leq  i \leq  n ,\  x = ( x _ {1} \dots x _ {n} ) ,
 +
$$
  
 
the simple-iteration method has the form
 
the simple-iteration method has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525040.png" /></td> </tr></table>
+
$$
 +
x _ {i}  ^ {k+} 1  = x _ {i}  ^ {k} - \tau \phi _ {i} ( x  ^ {k} ) ,\  1 \leq
 +
i \leq  n ,\  k \geq  0 .
 +
$$
  
The problem of choosing the iteration parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525041.png" /> is solved in dependence on the differentiability properties of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525042.png" />. Often it is subjected to the requirement that the method converges locally in a neighbourhood of a solution.
+
The problem of choosing the iteration parameter $  \tau $
 +
is solved in dependence on the differentiability properties of the $  \phi _ {i} $.  
 +
Often it is subjected to the requirement that the method converges locally in a neighbourhood of a solution.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D.K. Faddeev,  V.N. Faddeeva,  "Computational methods of linear algebra" , Freeman  (1963)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.S. Berezin,  N.P. Zhidkov,  "Computing methods" , Pergamon  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.M. Ortega,  W.C. Rheinboldt,  "Iterative solution of non-linear equations in several variables" , Acad. Press  (1970)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.A. Samarskii,  E.S. Nikolaev,  "Numerical methods for grid equations" , '''1–2''' , Birkhäuser  (1989)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D.K. Faddeev,  V.N. Faddeeva,  "Computational methods of linear algebra" , Freeman  (1963)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.S. Berezin,  N.P. Zhidkov,  "Computing methods" , Pergamon  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.M. Ortega,  W.C. Rheinboldt,  "Iterative solution of non-linear equations in several variables" , Acad. Press  (1970)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.A. Samarskii,  E.S. Nikolaev,  "Numerical methods for grid equations" , '''1–2''' , Birkhäuser  (1989)  (Translated from Russian)</TD></TR></table>

Revision as of 08:13, 6 June 2020


A method for approximately solving a system of linear algebraic equations $ Ax = b $ that can be transformed to the form $ x = Bx + c $ and whose solution is looked for as the limit of a sequence $ x ^ {k+} 1 = B x ^ {k} + c $, $ k = 0 , 1 \dots $ where $ x ^ {0} $ is an initial approximation. In order that the simple-iteration method converges for any initial approximation $ x ^ {0} $ it is necessary and sufficient that all eigenvalues of $ B $ are less than one in modulus; it is sufficient that some norm of $ B $ is less than one. If in some norm, compatible with the norm of a vector $ x $, $ B $ satisfies $ \| B \| \leq \rho < 1 $, then the simple-iteration method converges at the rate of a geometric series and the estimate

$$ \| x ^ {m} - x \| \leq \rho ^ {m} \| x ^ {0} - x \| $$

holds for its error.

In the case of a cubic, octahedral or spherical vector norm, the condition $ \| B \| \leq \rho $ is fulfilled if

1) $ \sum _ {j=} 1 ^ {n} | b _ {ij} | \leq \rho $, $ i = 1 \dots n $;

2) $ \sum _ {i=} 1 ^ {n} | b _ {ij} | \leq \rho $, $ j = 1 \dots n $;

3) $ \sum _ {i , j = 1 } ^ {n} b _ {ij} ^ {2} \leq \rho ^ {2} $.

The simplest version of the method corresponds to the case when one takes $ I - A $, where $ I $ is the identity matrix, for $ B $. If all diagonal entries of $ A $ are non-zero, then, choosing $ b = D ^ {-} 1 ( D - A ) $ and $ c = D ^ {-} 1 b $, where $ D $ is the diagonal matrix with as diagonal entries those of $ A $, one obtains the Jacobi method or the method of simultaneous displacement.

A particular case of the simple-iteration method is the method with $ B = I - \tau A $ and $ c = \tau b $, where $ \tau $ is an iteration parameter, chosen from the condition that the norm of $ I - \tau A $ is minimal with respect to $ \tau $. If $ \gamma _ {1} $ and $ \gamma _ {2} $ are the minimal and maximal eigenvalues of a symmetric positive-definite matrix $ A $ and $ \tau = 2 / ( \gamma _ {1} + \gamma _ {2} ) $, then one has for the matrix $ B $ in the spherical norm the estimate $ \| B \| \leq \rho $, with $ \rho = ( \gamma _ {2} - \gamma _ {1} ) / ( \gamma _ {2} + \gamma _ {1} ) < 1 $.

For a system of non-linear algebraic equations

$$ \phi _ {i} ( x) = 0 ,\ 1 \leq i \leq n ,\ x = ( x _ {1} \dots x _ {n} ) , $$

the simple-iteration method has the form

$$ x _ {i} ^ {k+} 1 = x _ {i} ^ {k} - \tau \phi _ {i} ( x ^ {k} ) ,\ 1 \leq i \leq n ,\ k \geq 0 . $$

The problem of choosing the iteration parameter $ \tau $ is solved in dependence on the differentiability properties of the $ \phi _ {i} $. Often it is subjected to the requirement that the method converges locally in a neighbourhood of a solution.

References

[1] D.K. Faddeev, V.N. Faddeeva, "Computational methods of linear algebra" , Freeman (1963) (Translated from Russian)
[2] I.S. Berezin, N.P. Zhidkov, "Computing methods" , Pergamon (1973) (Translated from Russian)
[3] J.M. Ortega, W.C. Rheinboldt, "Iterative solution of non-linear equations in several variables" , Acad. Press (1970)
[4] A.A. Samarskii, E.S. Nikolaev, "Numerical methods for grid equations" , 1–2 , Birkhäuser (1989) (Translated from Russian)
How to Cite This Entry:
Simple-iteration method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Simple-iteration_method&oldid=16747
This article was adapted from an original article by E.S. Nikolaev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article