Namespaces
Variants
Actions

Difference between revisions of "Rotations diagram"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A surface in the elliptic space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r0826901.png" /> defined by isometric smooth surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r0826902.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r0826903.png" /> in the Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r0826904.png" /> in the same way as the [[Rotation indicatrix|rotation indicatrix]] is defined for infinitesimal deformations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r0826905.png" />. L. Bianchi was the first to mention surfaces in elliptic space coincident with the rotations diagram, in examining the spherical representation of a deformation base for surfaces, where he showed that it coincides with the representation in the sense of Clifford for the asymptotic lines in the rotations diagram.
+
<!--
 +
r0826901.png
 +
$#A+1 = 33 n = 0
 +
$#C+1 = 33 : ~/encyclopedia/old_files/data/R082/R.0802690 Rotations diagram
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r0826906.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r0826907.png" /> be isometric smooth identically-oriented surfaces. At the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r0826908.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r0826909.png" /> corresponding in isometry, the trihedra formed by the tangent vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269011.png" /> to the corresponding isometric pairs of curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269013.png" /> and the normals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269015.png" /> are equal, i.e.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269016.png" /></td> </tr></table>
+
A surface in the elliptic space  $  E  ^ {3} $
 +
defined by isometric smooth surfaces  $  F $
 +
and  $  F ^ { * } $
 +
in the Euclidean space  $  \mathbf R  ^ {3} $
 +
in the same way as the [[Rotation indicatrix|rotation indicatrix]] is defined for infinitesimal deformations in  $  \mathbf R  ^ {3} $.  
 +
L. Bianchi was the first to mention surfaces in elliptic space coincident with the rotations diagram, in examining the spherical representation of a deformation base for surfaces, where he showed that it coincides with the representation in the sense of Clifford for the asymptotic lines in the rotations diagram.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269017.png" /></td> </tr></table>
+
Let  $  F $
 +
and  $  F  ^ {*,} $
 +
be isometric smooth identically-oriented surfaces. At the points  $  M $
 +
and  $  M  ^ {*} $
 +
corresponding in isometry, the trihedra formed by the tangent vectors  $  x _ {u} , x _ {v} $
 +
and  $  x _ {u}  ^ {*} , x _ {v}  ^ {*} $
 +
to the corresponding isometric pairs of curves  $  v = \textrm{ const } $
 +
and  $  u = \textrm{ const } $
 +
and the normals  $  n $
 +
and  $  n  ^ {*} $
 +
are equal, i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269018.png" /></td> </tr></table>
+
$$
 +
( x _ {u} )  ^ {2}  = ( x _ {u}  ^ {*} )  ^ {2} ,\ \
 +
( x _ {v} )  ^ {2}  = ( x _ {v}  ^ {*} )  ^ {2} ,
 +
$$
  
and therefore one of them is obtained from another by rotation around an axis with direction unit vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269019.png" /> through an angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269020.png" /> (defined up to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269021.png" />). Let
+
$$
 +
( n  ^ {*} )  ^ {2}  = ( n)  ^ {2}  = 1,\  ( x _ {u} , x _ {v} )  = ( x _ {u}  ^ {*} , x _ {v}  ^ {*} ),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269022.png" /></td> </tr></table>
+
$$
 +
( nx _ {u} )  = ( n  ^ {*} x _ {u}  ^ {*} )  = ( nx _ {v} )  = ( n  ^ {*} x _ {v}  ^ {*} )  = 0,
 +
$$
  
be the [[Quaternion|quaternion]], equal in modulus to 1 and defined up to its sign, representing this rotation. The set of such quaternions parametrized by the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269023.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269024.png" />) defines a set of points in the elliptic space, which is called the rotations diagram for the isometric surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269026.png" />. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269028.png" /> are isometric pieces of cylinders, then the rotations diagram is a part of a Clifford surface, and a minimal Clifford surface corresponds to circular cylinders. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269029.png" />, there is an elliptic plane outside the rotations diagram, and under a geodesic mapping of the elliptic space into the Euclidean space,
+
and therefore one of them is obtained from another by rotation around an axis with direction unit vector  $  \dot{V} $
 +
through an angle  $  \chi $(
 +
defined up to $  2 \pi $).  
 +
Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269030.png" /></td> </tr></table>
+
$$
 +
= \cos 
 +
\frac \chi {2}
 +
+ \dot{V}  \sin 
 +
\frac \chi {2}
  
the image of the rotations diagram is the rotation indicatrix for some infinitesimal deformation of the median surface corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269032.png" /> (see [[Cohn-Vossen transformation|Cohn-Vossen transformation]]) (it is regular if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269033.png" />).
+
$$
  
The properties of the rotations diagrams for isometric surfaces of positive Gaussian curvature are analogous to those of rotation indicatrices; for example, the specific internal curvature of the rotations diagram is always negative, and therefore it plays the same part as the rotation indicatrix when examining the isometry of convex surfaces.
+
be the [[Quaternion|quaternion]], equal in modulus to 1 and defined up to its sign, representing this rotation. The set of such quaternions parametrized by the points  $  M \in F $(
 +
or  $  M  ^ {*} \in F ^ { * } $)
 +
defines a set of points in the elliptic space, which is called the rotations diagram for the isometric surfaces $  F $
 +
and  $  F ^ { * } $.
 +
For example, if  $  F $
 +
and  $  F ^ { * } $
 +
are isometric pieces of cylinders, then the rotations diagram is a part of a Clifford surface, and a minimal Clifford surface corresponds to circular cylinders. If  $  | \chi | < \pi $,
 +
there is an elliptic plane outside the rotations diagram, and under a geodesic mapping of the elliptic space into the Euclidean space,
 +
 
 +
$$
 +
Q  =  \dot{V}  \sin 
 +
\frac \chi {2}
 +
+ \cos 
 +
\frac \chi {2}
 +
  \rightarrow  y  =  \dot{V}  \mathop{\rm tan} 
 +
\frac \chi {2}
 +
,
 +
$$
  
 +
the image of the rotations diagram is the rotation indicatrix for some infinitesimal deformation of the median surface corresponding to  $  F $
 +
and  $  F ^ { * } $(
 +
see [[Cohn-Vossen transformation|Cohn-Vossen transformation]]) (it is regular if  $  | \chi | < \pi $).
  
 +
The properties of the rotations diagrams for isometric surfaces of positive Gaussian curvature are analogous to those of rotation indicatrices; for example, the specific internal curvature of the rotations diagram is always negative, and therefore it plays the same part as the rotation indicatrix when examining the isometry of convex surfaces.
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Spivak,  "A comprehensive introduction to differential geometry" , '''1979''' , Publish or Perish  pp. 1–5</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.V. Pogorelov,  "Intrinsic geometry of surfaces" , Amer. Math. Soc.  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A.V. Pogorelov,  "Extrinsic geometry of convex surfaces" , Amer. Math. Soc.  (1973)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Spivak,  "A comprehensive introduction to differential geometry" , '''1979''' , Publish or Perish  pp. 1–5</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.V. Pogorelov,  "Intrinsic geometry of surfaces" , Amer. Math. Soc.  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A.V. Pogorelov,  "Extrinsic geometry of convex surfaces" , Amer. Math. Soc.  (1973)  (Translated from Russian)</TD></TR></table>

Revision as of 08:12, 6 June 2020


A surface in the elliptic space $ E ^ {3} $ defined by isometric smooth surfaces $ F $ and $ F ^ { * } $ in the Euclidean space $ \mathbf R ^ {3} $ in the same way as the rotation indicatrix is defined for infinitesimal deformations in $ \mathbf R ^ {3} $. L. Bianchi was the first to mention surfaces in elliptic space coincident with the rotations diagram, in examining the spherical representation of a deformation base for surfaces, where he showed that it coincides with the representation in the sense of Clifford for the asymptotic lines in the rotations diagram.

Let $ F $ and $ F ^ {*,} $ be isometric smooth identically-oriented surfaces. At the points $ M $ and $ M ^ {*} $ corresponding in isometry, the trihedra formed by the tangent vectors $ x _ {u} , x _ {v} $ and $ x _ {u} ^ {*} , x _ {v} ^ {*} $ to the corresponding isometric pairs of curves $ v = \textrm{ const } $ and $ u = \textrm{ const } $ and the normals $ n $ and $ n ^ {*} $ are equal, i.e.

$$ ( x _ {u} ) ^ {2} = ( x _ {u} ^ {*} ) ^ {2} ,\ \ ( x _ {v} ) ^ {2} = ( x _ {v} ^ {*} ) ^ {2} , $$

$$ ( n ^ {*} ) ^ {2} = ( n) ^ {2} = 1,\ ( x _ {u} , x _ {v} ) = ( x _ {u} ^ {*} , x _ {v} ^ {*} ), $$

$$ ( nx _ {u} ) = ( n ^ {*} x _ {u} ^ {*} ) = ( nx _ {v} ) = ( n ^ {*} x _ {v} ^ {*} ) = 0, $$

and therefore one of them is obtained from another by rotation around an axis with direction unit vector $ \dot{V} $ through an angle $ \chi $( defined up to $ 2 \pi $). Let

$$ Q = \cos \frac \chi {2} + \dot{V} \sin \frac \chi {2} $$

be the quaternion, equal in modulus to 1 and defined up to its sign, representing this rotation. The set of such quaternions parametrized by the points $ M \in F $( or $ M ^ {*} \in F ^ { * } $) defines a set of points in the elliptic space, which is called the rotations diagram for the isometric surfaces $ F $ and $ F ^ { * } $. For example, if $ F $ and $ F ^ { * } $ are isometric pieces of cylinders, then the rotations diagram is a part of a Clifford surface, and a minimal Clifford surface corresponds to circular cylinders. If $ | \chi | < \pi $, there is an elliptic plane outside the rotations diagram, and under a geodesic mapping of the elliptic space into the Euclidean space,

$$ Q = \dot{V} \sin \frac \chi {2} + \cos \frac \chi {2} \rightarrow y = \dot{V} \mathop{\rm tan} \frac \chi {2} , $$

the image of the rotations diagram is the rotation indicatrix for some infinitesimal deformation of the median surface corresponding to $ F $ and $ F ^ { * } $( see Cohn-Vossen transformation) (it is regular if $ | \chi | < \pi $).

The properties of the rotations diagrams for isometric surfaces of positive Gaussian curvature are analogous to those of rotation indicatrices; for example, the specific internal curvature of the rotations diagram is always negative, and therefore it plays the same part as the rotation indicatrix when examining the isometry of convex surfaces.

Comments

References

[a1] M. Spivak, "A comprehensive introduction to differential geometry" , 1979 , Publish or Perish pp. 1–5
[a2] A.V. Pogorelov, "Intrinsic geometry of surfaces" , Amer. Math. Soc. (1973) (Translated from Russian)
[a3] A.V. Pogorelov, "Extrinsic geometry of convex surfaces" , Amer. Math. Soc. (1973) (Translated from Russian)
How to Cite This Entry:
Rotations diagram. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rotations_diagram&oldid=13690
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article