Namespaces
Variants
Actions

Difference between revisions of "Riesz theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Riesz's uniqueness theorem for bounded analytic functions: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r0823301.png" /> is a bounded regular [[Analytic function|analytic function]] in the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r0823302.png" /> having zero radial boundary values (cf. [[Radial boundary value|Radial boundary value]]) on a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r0823303.png" /> of the circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r0823304.png" /> of positive measure, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r0823305.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r0823306.png" />. The theorem was formulated and proved by the brothers F. Riesz and M. Riesz in 1916 (see ).
+
<!--
 +
r0823301.png
 +
$#A+1 = 43 n = 3
 +
$#C+1 = 43 : ~/encyclopedia/old_files/data/R082/R.0802330 Riesz theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
Riesz's uniqueness theorem for bounded analytic functions: If  $  f( z) $
 +
is a bounded regular [[Analytic function|analytic function]] in the unit disc $  D = \{ {z \in \mathbf C } : {| z | < 1 } \} $
 +
having zero radial boundary values (cf. [[Radial boundary value|Radial boundary value]]) on a subset $  E $
 +
of the circle $  \Gamma = \{ {z } : {| z | = 1 } \} $
 +
of positive measure, $  \mathop{\rm mes}  E > 0 $,  
 +
then $  f( z) \equiv 0 $.  
 +
The theorem was formulated and proved by the brothers F. Riesz and M. Riesz in 1916 (see ).
  
 
This theorem is one of the first boundary value theorems on the uniqueness of analytic functions. Independently of the brothers Riesz, general boundary value theorems on uniqueness were obtained by N.N. Luzin and I.I. Privalov (see , , and [[Luzin–Privalov theorems|Luzin–Privalov theorems]]).
 
This theorem is one of the first boundary value theorems on the uniqueness of analytic functions. Independently of the brothers Riesz, general boundary value theorems on uniqueness were obtained by N.N. Luzin and I.I. Privalov (see , , and [[Luzin–Privalov theorems|Luzin–Privalov theorems]]).
  
Riesz's theorem on the Cauchy integral: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r0823307.png" /> is a [[Cauchy integral|Cauchy integral]],
+
Riesz's theorem on the Cauchy integral: If $  f( z) $
 +
is a [[Cauchy integral|Cauchy integral]],
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r0823308.png" /></td> </tr></table>
+
$$
 +
f( z)  =
 +
\frac{1}{2 \pi i }
 +
\int\limits _  \Gamma 
 +
\frac{f( \zeta )  d \zeta }{\zeta - z }
 +
,
 +
$$
  
in the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r0823309.png" /> and its boundary values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233010.png" /> form a function of bounded variation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233011.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233012.png" /> is an absolutely-continuous function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233013.png" /> (see [[#References|[1]]]).
+
in the unit disc $  D $
 +
and its boundary values $  f( \zeta ) = f( e ^ {i \theta } ) $
 +
form a function of bounded variation on $  \Gamma $,  
 +
then $  f( \zeta ) $
 +
is an absolutely-continuous function on $  \Gamma $(
 +
see [[#References|[1]]]).
  
This theorem can be generalized to Cauchy integrals along any rectifiable contour <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233014.png" /> (see [[#References|[3]]]).
+
This theorem can be generalized to Cauchy integrals along any rectifiable contour $  \Gamma $(
 +
see [[#References|[3]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Riesz,  M. Riesz,  "Ueber die Randwerte einer analytischen Funktion"  G. Mittag-Leffler (ed.) , ''4th Congress Math. Scand.'' , Almqvist &amp; Wiksells  (1920)  pp. 27–44</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.I. Privalov,  "The Cauchy integral" , Saratov  (1918)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.I. [I.I. Privalov] Priwalow,  "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Riesz,  M. Riesz,  "Ueber die Randwerte einer analytischen Funktion"  G. Mittag-Leffler (ed.) , ''4th Congress Math. Scand.'' , Almqvist &amp; Wiksells  (1920)  pp. 27–44</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.I. Privalov,  "The Cauchy integral" , Saratov  (1918)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.I. [I.I. Privalov] Priwalow,  "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The F. and M. Riesz theorem is usually stated as follows: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233015.png" /> is a complex Borel measure on the unit circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233016.png" /> and if
+
The F. and M. Riesz theorem is usually stated as follows: If $  \mu $
 +
is a complex Borel measure on the unit circle $  \Gamma $
 +
and if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233017.png" /></td> </tr></table>
+
$$
 +
\int\limits _  \Gamma  e ^ {- {i n t } }  d \mu ( t)  = 0,\ \
 +
n = - 1, - 2 \dots
 +
$$
  
then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233018.png" /> is absolutely continuous with respect to Lebesgue measure, and Lebesgue measure is absolutely continuous with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233019.png" />.
+
then $  \mu $
 +
is absolutely continuous with respect to Lebesgue measure, and Lebesgue measure is absolutely continuous with respect to $  \mu $.
  
 
This theorem has been generalized both in the setting of function algebras and in the setting of harmonic analysis on groups. As an example of the first there is the following theorem.
 
This theorem has been generalized both in the setting of function algebras and in the setting of harmonic analysis on groups. As an example of the first there is the following theorem.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233020.png" /> be a continuous homomorphism of the function algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233021.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233022.png" />, suppose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233023.png" /> has only one representing measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233024.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233025.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233026.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233027.png" /> annihilates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233028.png" />, and let
+
Let $  \Phi $
 +
be a continuous homomorphism of the function algebra $  A $
 +
on $  X $,  
 +
suppose $  \Phi $
 +
has only one representing measure $  \mu $
 +
on $  X $,  
 +
let $  \nu \in A  ^  \perp  $,  
 +
i.e. $  \nu $
 +
annihilates $  A $,  
 +
and let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233029.png" /></td> </tr></table>
+
$$
 +
\nu  = \nu _  \mu  + \nu _ {s}  $$
  
be the Lebesgue decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233030.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233031.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233033.png" />.
+
be the Lebesgue decomposition of $  \nu $
 +
with respect to $  \mu $.  
 +
Then $  \nu _  \mu  \in A  ^  \perp  $
 +
and $  \nu _ {s} \in A  ^  \perp  $.
  
There is a more general theorem, where the condition that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233034.png" /> has only one representing measure is removed, cf. [[#References|[a5]]]. In the other setting one tries to infer from vanishing of part of the spectrum of a measure that it is absolutely continuous with respect to the invariant measure, cf. [[#References|[a1]]].
+
There is a more general theorem, where the condition that $  \Phi $
 +
has only one representing measure is removed, cf. [[#References|[a5]]]. In the other setting one tries to infer from vanishing of part of the spectrum of a measure that it is absolutely continuous with respect to the invariant measure, cf. [[#References|[a1]]].
  
Another theorem due to F. Riesz is the Riesz representation theorem. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233035.png" /> be a locally compact Hausdorff space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233036.png" /> the space of compactly-supported continuous functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233037.png" />. Then each bounded linear functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233038.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233039.png" /> has the form
+
Another theorem due to F. Riesz is the Riesz representation theorem. Let $  X $
 +
be a locally compact Hausdorff space and $  C _ {0} ( X) $
 +
the space of compactly-supported continuous functions on $  X $.  
 +
Then each bounded linear functional $  \Phi $
 +
on $  C _ {0} ( X) $
 +
has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233040.png" /></td> </tr></table>
+
$$
 +
\Phi ( f  )  = \int\limits _ { X } f  d \mu \  ( f \in C _ {0} ( X)),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233041.png" /> is a complex regular Borel measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233042.png" />. Moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082330/r08233043.png" /> is unique.
+
where $  \mu $
 +
is a complex regular Borel measure on $  X $.  
 +
Moreover, $  \mu $
 +
is unique.
  
 
See e.g., [[#References|[a6]]].
 
See e.g., [[#References|[a6]]].

Latest revision as of 08:11, 6 June 2020


Riesz's uniqueness theorem for bounded analytic functions: If $ f( z) $ is a bounded regular analytic function in the unit disc $ D = \{ {z \in \mathbf C } : {| z | < 1 } \} $ having zero radial boundary values (cf. Radial boundary value) on a subset $ E $ of the circle $ \Gamma = \{ {z } : {| z | = 1 } \} $ of positive measure, $ \mathop{\rm mes} E > 0 $, then $ f( z) \equiv 0 $. The theorem was formulated and proved by the brothers F. Riesz and M. Riesz in 1916 (see ).

This theorem is one of the first boundary value theorems on the uniqueness of analytic functions. Independently of the brothers Riesz, general boundary value theorems on uniqueness were obtained by N.N. Luzin and I.I. Privalov (see , , and Luzin–Privalov theorems).

Riesz's theorem on the Cauchy integral: If $ f( z) $ is a Cauchy integral,

$$ f( z) = \frac{1}{2 \pi i } \int\limits _ \Gamma \frac{f( \zeta ) d \zeta }{\zeta - z } , $$

in the unit disc $ D $ and its boundary values $ f( \zeta ) = f( e ^ {i \theta } ) $ form a function of bounded variation on $ \Gamma $, then $ f( \zeta ) $ is an absolutely-continuous function on $ \Gamma $( see [1]).

This theorem can be generalized to Cauchy integrals along any rectifiable contour $ \Gamma $( see [3]).

References

[1] F. Riesz, M. Riesz, "Ueber die Randwerte einer analytischen Funktion" G. Mittag-Leffler (ed.) , 4th Congress Math. Scand. , Almqvist & Wiksells (1920) pp. 27–44
[2] I.I. Privalov, "The Cauchy integral" , Saratov (1918) (In Russian)
[3] I.I. [I.I. Privalov] Priwalow, "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)

Comments

The F. and M. Riesz theorem is usually stated as follows: If $ \mu $ is a complex Borel measure on the unit circle $ \Gamma $ and if

$$ \int\limits _ \Gamma e ^ {- {i n t } } d \mu ( t) = 0,\ \ n = - 1, - 2 \dots $$

then $ \mu $ is absolutely continuous with respect to Lebesgue measure, and Lebesgue measure is absolutely continuous with respect to $ \mu $.

This theorem has been generalized both in the setting of function algebras and in the setting of harmonic analysis on groups. As an example of the first there is the following theorem.

Let $ \Phi $ be a continuous homomorphism of the function algebra $ A $ on $ X $, suppose $ \Phi $ has only one representing measure $ \mu $ on $ X $, let $ \nu \in A ^ \perp $, i.e. $ \nu $ annihilates $ A $, and let

$$ \nu = \nu _ \mu + \nu _ {s} $$

be the Lebesgue decomposition of $ \nu $ with respect to $ \mu $. Then $ \nu _ \mu \in A ^ \perp $ and $ \nu _ {s} \in A ^ \perp $.

There is a more general theorem, where the condition that $ \Phi $ has only one representing measure is removed, cf. [a5]. In the other setting one tries to infer from vanishing of part of the spectrum of a measure that it is absolutely continuous with respect to the invariant measure, cf. [a1].

Another theorem due to F. Riesz is the Riesz representation theorem. Let $ X $ be a locally compact Hausdorff space and $ C _ {0} ( X) $ the space of compactly-supported continuous functions on $ X $. Then each bounded linear functional $ \Phi $ on $ C _ {0} ( X) $ has the form

$$ \Phi ( f ) = \int\limits _ { X } f d \mu \ ( f \in C _ {0} ( X)), $$

where $ \mu $ is a complex regular Borel measure on $ X $. Moreover, $ \mu $ is unique.

See e.g., [a6].

References

[a1] R.G.M. Brummelhuis, "An F. and M. Riesz theorem for bounded symmetric domains" Ann. Inst. Fourier , 37 (1987) pp. 139–150
[a2] P.L. Duren, "Theory of spaces" , Acad. Press (1970)
[a3] J.-B. Garnett, "Bounded analytic functions" , Acad. Press (1981)
[a4] P. Koosis, "Introduction to -spaces. With an appendix on Wolff's proof of the corona theorem" , Cambridge Univ. Press (1980)
[a5] W. Rudin, "Function theory in the unit ball in " , Springer (1980)
[a6] W. Rudin, "Real and complex analysis" , McGraw-Hill (1966) pp. 98
How to Cite This Entry:
Riesz theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riesz_theorem&oldid=17889
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article