Namespaces
Variants
Actions

Difference between revisions of "Riemannian curvature"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A measure of the difference between the metrics of a Riemannian and a Euclidean space. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r0821301.png" /> be a point of a [[Riemannian space|Riemannian space]] and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r0821302.png" /> be a two-dimensional regular surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r0821303.png" /> passing through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r0821304.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r0821305.png" /> be a simply closed contour in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r0821306.png" /> passing through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r0821307.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r0821308.png" /> be the area of the part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r0821309.png" /> bounded by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213010.png" />. Apply the [[Parallel displacement(2)|parallel displacement]] along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213011.png" /> to an arbitrary vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213012.png" /> tangent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213013.png" /> (that is, a linear expression in the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213015.png" />). Then the component of the transferred vector tangential to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213016.png" /> turns out to be turned in relation to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213017.png" /> by an angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213018.png" /> (the positive reference direction of the angle must coincide with the direction of movement along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213019.png" />). If, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213020.png" /> is contracted to the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213021.png" />, the limit
+
<!--
 +
r0821301.png
 +
$#A+1 = 31 n = 0
 +
$#C+1 = 31 : ~/encyclopedia/old_files/data/R082/R.0802130 Riemannian curvature
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213022.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
exists, then it is called the Riemannian curvature (the [[Curvature|curvature]] of the Riemannian space) at the given point in the direction of the two-dimensional surface; the Riemannian curvature does not depend on the surface but only on its direction at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213023.png" />, that is, on the direction of the two-dimensional tangent plane to the Euclidean space that contains the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213025.png" />.
+
A measure of the difference between the metrics of a Riemannian and a Euclidean space. Let  $  M $
 +
be a point of a [[Riemannian space|Riemannian space]] and let  $  F $
 +
be a two-dimensional regular surface $  x  ^ {i} = x  ^ {i} ( u, v) $
 +
passing through  $  M $,  
 +
let  $  L $
 +
be a simply closed contour in  $  F $
 +
passing through  $  M $,  
 +
and let  $  \sigma $
 +
be the area of the part of  $  F $
 +
bounded by  $  L $.
 +
Apply the [[Parallel displacement(2)|parallel displacement]] along  $  L $
 +
to an arbitrary vector  $  a  ^ {i} $
 +
tangent to $  F $(
 +
that is, a linear expression in the vectors $  \partial  x  ^ {i} / \partial  u $,
 +
$  \partial  x  ^ {i} / \partial  v $).  
 +
Then the component of the transferred vector tangential to  $  F $
 +
turns out to be turned in relation to  $  a  ^ {i} $
 +
by an angle  $  \phi $(
 +
the positive reference direction of the angle must coincide with the direction of movement along  $  L $).  
 +
If, when  $  L $
 +
is contracted to the point  $  M $,  
 +
the limit
  
The Riemannian curvature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213026.png" /> is connected with the [[Curvature tensor|curvature tensor]] by the formula:
+
$$
 +
= \lim\limits 
 +
\frac \phi  \sigma
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213027.png" /></td> </tr></table>
+
$$
  
where
+
exists, then it is called the Riemannian curvature (the [[Curvature|curvature]] of the Riemannian space) at the given point in the direction of the two-dimensional surface; the Riemannian curvature does not depend on the surface but only on its direction at  $  M $,
 +
that is, on the direction of the two-dimensional tangent plane to the Euclidean space that contains the vectors  $  \partial  ^ {i} x/ \partial  u $,
 +
$  \partial  x  ^ {i} / \partial  v $.
 +
 
 +
The Riemannian curvature  $  K $
 +
is connected with the [[Curvature tensor|curvature tensor]] by the formula:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213028.png" /></td> </tr></table>
+
$$
 +
= \sum _ {m,l,k,j } R _ {mlkj} x  ^ {ml} x  ^ {kj} ,
 +
$$
  
in which the parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213029.png" /> are chosen such that the area of the parallelogram constructed on the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213031.png" /> equals 1.
+
where
  
 +
$$
 +
x  ^ {ml}  = 
 +
\frac{1}{2}
 +
\left (
 +
\frac{\partial  x  ^ {m} }{\partial  u }
 +
 +
\frac{\partial  x
 +
^ {l} }{\partial  v }
 +
-
 +
\frac{\partial  x  ^ {l} }{\partial  u }
 +
 +
\frac{\partial  x  ^ {m} }{\partial  v }
 +
\right ) ,
 +
$$
  
 +
in which the parameters  $  u , v $
 +
are chosen such that the area of the parallelogram constructed on the vectors  $  \partial  x  ^ {i} / \partial  u $,
 +
$  \partial  x  ^ {i} / \partial  v $
 +
equals 1.
  
 
====Comments====
 
====Comments====

Latest revision as of 08:11, 6 June 2020


A measure of the difference between the metrics of a Riemannian and a Euclidean space. Let $ M $ be a point of a Riemannian space and let $ F $ be a two-dimensional regular surface $ x ^ {i} = x ^ {i} ( u, v) $ passing through $ M $, let $ L $ be a simply closed contour in $ F $ passing through $ M $, and let $ \sigma $ be the area of the part of $ F $ bounded by $ L $. Apply the parallel displacement along $ L $ to an arbitrary vector $ a ^ {i} $ tangent to $ F $( that is, a linear expression in the vectors $ \partial x ^ {i} / \partial u $, $ \partial x ^ {i} / \partial v $). Then the component of the transferred vector tangential to $ F $ turns out to be turned in relation to $ a ^ {i} $ by an angle $ \phi $( the positive reference direction of the angle must coincide with the direction of movement along $ L $). If, when $ L $ is contracted to the point $ M $, the limit

$$ K = \lim\limits \frac \phi \sigma $$

exists, then it is called the Riemannian curvature (the curvature of the Riemannian space) at the given point in the direction of the two-dimensional surface; the Riemannian curvature does not depend on the surface but only on its direction at $ M $, that is, on the direction of the two-dimensional tangent plane to the Euclidean space that contains the vectors $ \partial ^ {i} x/ \partial u $, $ \partial x ^ {i} / \partial v $.

The Riemannian curvature $ K $ is connected with the curvature tensor by the formula:

$$ K = \sum _ {m,l,k,j } R _ {mlkj} x ^ {ml} x ^ {kj} , $$

where

$$ x ^ {ml} = \frac{1}{2} \left ( \frac{\partial x ^ {m} }{\partial u } \frac{\partial x ^ {l} }{\partial v } - \frac{\partial x ^ {l} }{\partial u } \frac{\partial x ^ {m} }{\partial v } \right ) , $$

in which the parameters $ u , v $ are chosen such that the area of the parallelogram constructed on the vectors $ \partial x ^ {i} / \partial u $, $ \partial x ^ {i} / \partial v $ equals 1.

Comments

The Riemannian curvature is better known as the sectional curvature.

For references see Riemann tensor.

How to Cite This Entry:
Riemannian curvature. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riemannian_curvature&oldid=19233
This article was adapted from an original article by Material from the article "Riemannian geometry" in BSE-3 (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article