Namespaces
Variants
Actions

Difference between revisions of "Representation function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r0813501.png" /> on a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r0813502.png" /> endowed with a continuous action of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r0813503.png" />, whose orbit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r0813504.png" /> in the space of all continuous functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r0813505.png" /> generates a finite-dimensional subspace. Representation functions are also called spherical, or almost-invariant, functions. The representation functions with values in the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r0813506.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r0813507.png" /> form a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r0813508.png" />-invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r0813509.png" />-subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135010.png" /> in the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135011.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135012.png" />-valued continuous functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135013.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135014.png" /> is a topological group acting on itself by left shifts, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135015.png" /> coincides with the subspace in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135016.png" /> generated by the matrix elements of finite-dimensional continuous linear representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135017.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135018.png" /> is, moreover, a compact group, then one may restrict to matrix elements of irreducible representations. E.g., if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135019.png" /> is the rotation group of the plane, then the representation functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135020.png" /> are the trigonometric polynomials. Another example is furnished by the classical [[Spherical functions|spherical functions]] on the sphere, which are representation functions for the standard action of the rotation group of the sphere.
+
<!--
 +
r0813501.png
 +
$#A+1 = 66 n = 0
 +
$#C+1 = 66 : ~/encyclopedia/old_files/data/R081/R.0801350 Representation function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135021.png" /> is a compact topological group, continuously acting on a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135022.png" /> that is a countable union of compacta, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135023.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135024.png" /> in the compact-open topology (cf. [[Peter–Weyl theorem|Peter–Weyl theorem]]). Analogous statements hold for representation functions of various degrees of smoothness on a differentiable manifold with a smooth action of a compact Lie group. On the other hand, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135025.png" /> does not allow for non-trivial continuous homomorphisms into a compact group (e.g. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135026.png" /> is a connected semi-simple Lie group without compact simple factors), then every representation function on a compact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135027.png" /> with continuous action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135028.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135029.png" />-invariant [[#References|[4]]].
+
{{TEX|auto}}
 +
{{TEX|done}}
  
If a smooth action of a compact Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135030.png" /> on a differentiable manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135031.png" /> has only a finite number of orbit types, then the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135032.png" /> of all representation functions of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135033.png" /> is finitely generated over the subalgebra of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135034.png" />-invariant functions of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135035.png" /> (cf. [[#References|[5]]]). In particular, for a homogeneous space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135036.png" /> the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135037.png" /> is finitely generated and can be identified with the algebra of regular functions on the affine homogeneous algebraic variety over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135038.png" /> whose set of real points coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135039.png" />. The problem of decomposing a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135040.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135041.png" /> into a direct sum of simple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135042.png" />-modules is important for applications. In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135043.png" /> is the symmetric homogeneous space of a compact group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135044.png" /> it was solved by E. Cartan [[#References|[1]]].
+
A continuous function  $  f $
 +
on a topological space  $  X $
 +
endowed with a continuous action of a group $  G $,
 +
whose orbit  $  \{ {g  ^ {*} f } : {g \in G } \} $
 +
in the space of all continuous functions on $  X $
 +
generates a finite-dimensional subspace. Representation functions are also called spherical, or almost-invariant, functions. The representation functions with values in the field  $  k = \mathbf R $
 +
or  $  \mathbf C $
 +
form a  $  G $-
 +
invariant $  k $-
 +
subalgebra  $  F ( X, k) _ {G} $
 +
in the algebra $  F ( X, k) $
 +
of all  $  k $-
 +
valued continuous functions on $  X $.
 +
If  $  X = G $
 +
is a topological group acting on itself by left shifts,  $  F ( X, k) _ {G} = F ( G, k) _ {G} $
 +
coincides with the subspace in  $  F ( G, k) $
 +
generated by the matrix elements of finite-dimensional continuous linear representations of  $  G $.  
 +
If  $  G $
 +
is, moreover, a compact group, then one may restrict to matrix elements of irreducible representations. E.g., if  $  G = T $
 +
is the rotation group of the plane, then the representation functions on  $  G $
 +
are the trigonometric polynomials. Another example is furnished by the classical [[Spherical functions|spherical functions]] on the sphere, which are representation functions for the standard action of the rotation group of the sphere.
  
A generalization of representation functions are representation sections of a vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135045.png" />-bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135046.png" /> over a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135047.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135048.png" />, i.e. continuous sections whose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135049.png" />-orbits generate a finite-dimensional subspace in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135050.png" /> of all continuous sections, e.g. representation tensor fields on smooth manifolds with a smooth action of a Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135051.png" />; they form the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135052.png" />-submodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135053.png" /> (cf. [[#References|[5]]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135054.png" /> is a compact group, the submodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135055.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135056.png" />. In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135057.png" /> is the symmetric homogeneous space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135058.png" />, the decomposition of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135059.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135060.png" /> into simple components has been studied (cf. [[#References|[3]]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135061.png" /> is the compact homogeneous space of a semi-simple Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135062.png" /> without compact factors with a connected stationary subgroup, then
+
If  $  G $
 +
is a compact topological group, continuously acting on a space $  X $
 +
that is a countable union of compacta, then  $  F ( X, k) _ {G} $
 +
is dense in  $  F ( X, k) $
 +
in the compact-open topology (cf. [[Peter–Weyl theorem|Peter–Weyl theorem]]). Analogous statements hold for representation functions of various degrees of smoothness on a differentiable manifold with a smooth action of a compact Lie group. On the other hand, if  $  G $
 +
does not allow for non-trivial continuous homomorphisms into a compact group (e.g. $  G $
 +
is a connected semi-simple Lie group without compact simple factors), then every representation function on a compact space $  X $
 +
with continuous action of $  G $
 +
is  $  G $-
 +
invariant [[#References|[4]]].
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135063.png" /></td> </tr></table>
+
If a smooth action of a compact Lie group  $  G $
 +
on a differentiable manifold  $  X $
 +
has only a finite number of orbit types, then the algebra  $  F ^ { \infty } ( X, k) _ {G} $
 +
of all representation functions of class  $  C  ^  \infty  $
 +
is finitely generated over the subalgebra of all  $  G $-
 +
invariant functions of class $  C  ^  \infty  $(
 +
cf. [[#References|[5]]]). In particular, for a homogeneous space  $  X $
 +
the algebra  $  F ( X, \mathbf C ) _ {G} = F ^ { \infty } ( X, \mathbf C ) _ {G} $
 +
is finitely generated and can be identified with the algebra of regular functions on the affine homogeneous algebraic variety over  $  \mathbf C $
 +
whose set of real points coincides with  $  X $.
 +
The problem of decomposing a  $  G $-
 +
module  $  F ( X, \mathbf C ) _ {G} $
 +
into a direct sum of simple  $  G $-
 +
modules is important for applications. In case  $  X $
 +
is the symmetric homogeneous space of a compact group  $  G $
 +
it was solved by E. Cartan [[#References|[1]]].
 +
 
 +
A generalization of representation functions are representation sections of a vector  $  G $-
 +
bundle  $  E $
 +
over a  $  G $-
 +
space  $  X $,
 +
i.e. continuous sections whose  $  G $-
 +
orbits generate a finite-dimensional subspace in the space  $  \Gamma ( E) $
 +
of all continuous sections, e.g. representation tensor fields on smooth manifolds with a smooth action of a Lie group  $  G $;  
 +
they form the  $  G $-
 +
submodule  $  \Gamma ( E) _ {G} \subset  \Gamma ( E) $(
 +
cf. [[#References|[5]]]). If  $  G $
 +
is a compact group, the submodule  $  \Gamma ( E) _ {G} $
 +
is dense in  $  \Gamma ( E) $.  
 +
In case  $  X $
 +
is the symmetric homogeneous space of  $  G $,
 +
the decomposition of the  $  G $-
 +
module  $  \Gamma ( E) _ {G} $
 +
into simple components has been studied (cf. [[#References|[3]]]). If  $  X $
 +
is the compact homogeneous space of a semi-simple Lie group  $  G $
 +
without compact factors with a connected stationary subgroup, then
 +
 
 +
$$
 +
\mathop{\rm dim}  \Gamma ( E) _ {G}  < \infty
 +
$$
  
 
(cf. [[#References|[2]]]).
 
(cf. [[#References|[2]]]).
Line 13: Line 89:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Cartan,  "Sur la détermination d'un système orthogonal complet dans un espace de Riemann symmétrique clos"  ''Rend. Circ. Mat. Palermo'' , '''53'''  (1929)  pp. 217–252</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  Van Cha Dao,  "Spherical sections on a compact homogeneous space"  ''Uspekhi Mat. Nauk'' , '''30''' :  5  (1975)  pp. 203–204  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  Yu.V. Dzyadyk,  "On the determination of the spectrum of an induced representation on a compact symmetric space"  ''Soviet Math. Dokl.'' , '''16'''  (1975)  pp. 193–197  ''Dokl. Akad. Nauk SSSR'' , '''220''' :  5  (1975)  pp. 1019–1022</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.M. Lukatskii,  ''Uspekhi Mat. Nauk'' , '''26''' :  5  (1971)  pp. 212–213</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A.L. Onishchik,  "On invariants and almost invariants of compact transformation groups"  ''Trans. Moscow Math. Soc.'' , '''35'''  (1976)  pp. 237–267  ''Trudy Moskov. Mat. Obshch.'' , '''35'''  (1976)  pp. 235–264</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Cartan,  "Sur la détermination d'un système orthogonal complet dans un espace de Riemann symmétrique clos"  ''Rend. Circ. Mat. Palermo'' , '''53'''  (1929)  pp. 217–252</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  Van Cha Dao,  "Spherical sections on a compact homogeneous space"  ''Uspekhi Mat. Nauk'' , '''30''' :  5  (1975)  pp. 203–204  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  Yu.V. Dzyadyk,  "On the determination of the spectrum of an induced representation on a compact symmetric space"  ''Soviet Math. Dokl.'' , '''16'''  (1975)  pp. 193–197  ''Dokl. Akad. Nauk SSSR'' , '''220''' :  5  (1975)  pp. 1019–1022</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.M. Lukatskii,  ''Uspekhi Mat. Nauk'' , '''26''' :  5  (1971)  pp. 212–213</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A.L. Onishchik,  "On invariants and almost invariants of compact transformation groups"  ''Trans. Moscow Math. Soc.'' , '''35'''  (1976)  pp. 237–267  ''Trudy Moskov. Mat. Obshch.'' , '''35'''  (1976)  pp. 235–264</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
A more common name for  "representation function"  is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135065.png" />-finite function. The term  "spherical function"  usually has another meaning, see (the editorial comments to) [[Spherical functions|Spherical functions]]. For Cartan's work [[#References|[1]]] on the decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135066.png" /> in the case of a compact symmetric space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081350/r08135067.png" /> see [[#References|[a1]]], Chapt. V.
+
A more common name for  "representation function"  is $  G $-
 +
finite function. The term  "spherical function"  usually has another meaning, see (the editorial comments to) [[Spherical functions|Spherical functions]]. For Cartan's work [[#References|[1]]] on the decomposition of $  F( X, \mathbf C ) _ {G} $
 +
in the case of a compact symmetric space $  X $
 +
see [[#References|[a1]]], Chapt. V.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Helgason,  "Groups and geometric analysis" , Acad. Press  (1984)  pp. Chapt. II, Sect. 4</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Helgason,  "Groups and geometric analysis" , Acad. Press  (1984)  pp. Chapt. II, Sect. 4</TD></TR></table>

Revision as of 08:11, 6 June 2020


A continuous function $ f $ on a topological space $ X $ endowed with a continuous action of a group $ G $, whose orbit $ \{ {g ^ {*} f } : {g \in G } \} $ in the space of all continuous functions on $ X $ generates a finite-dimensional subspace. Representation functions are also called spherical, or almost-invariant, functions. The representation functions with values in the field $ k = \mathbf R $ or $ \mathbf C $ form a $ G $- invariant $ k $- subalgebra $ F ( X, k) _ {G} $ in the algebra $ F ( X, k) $ of all $ k $- valued continuous functions on $ X $. If $ X = G $ is a topological group acting on itself by left shifts, $ F ( X, k) _ {G} = F ( G, k) _ {G} $ coincides with the subspace in $ F ( G, k) $ generated by the matrix elements of finite-dimensional continuous linear representations of $ G $. If $ G $ is, moreover, a compact group, then one may restrict to matrix elements of irreducible representations. E.g., if $ G = T $ is the rotation group of the plane, then the representation functions on $ G $ are the trigonometric polynomials. Another example is furnished by the classical spherical functions on the sphere, which are representation functions for the standard action of the rotation group of the sphere.

If $ G $ is a compact topological group, continuously acting on a space $ X $ that is a countable union of compacta, then $ F ( X, k) _ {G} $ is dense in $ F ( X, k) $ in the compact-open topology (cf. Peter–Weyl theorem). Analogous statements hold for representation functions of various degrees of smoothness on a differentiable manifold with a smooth action of a compact Lie group. On the other hand, if $ G $ does not allow for non-trivial continuous homomorphisms into a compact group (e.g. $ G $ is a connected semi-simple Lie group without compact simple factors), then every representation function on a compact space $ X $ with continuous action of $ G $ is $ G $- invariant [4].

If a smooth action of a compact Lie group $ G $ on a differentiable manifold $ X $ has only a finite number of orbit types, then the algebra $ F ^ { \infty } ( X, k) _ {G} $ of all representation functions of class $ C ^ \infty $ is finitely generated over the subalgebra of all $ G $- invariant functions of class $ C ^ \infty $( cf. [5]). In particular, for a homogeneous space $ X $ the algebra $ F ( X, \mathbf C ) _ {G} = F ^ { \infty } ( X, \mathbf C ) _ {G} $ is finitely generated and can be identified with the algebra of regular functions on the affine homogeneous algebraic variety over $ \mathbf C $ whose set of real points coincides with $ X $. The problem of decomposing a $ G $- module $ F ( X, \mathbf C ) _ {G} $ into a direct sum of simple $ G $- modules is important for applications. In case $ X $ is the symmetric homogeneous space of a compact group $ G $ it was solved by E. Cartan [1].

A generalization of representation functions are representation sections of a vector $ G $- bundle $ E $ over a $ G $- space $ X $, i.e. continuous sections whose $ G $- orbits generate a finite-dimensional subspace in the space $ \Gamma ( E) $ of all continuous sections, e.g. representation tensor fields on smooth manifolds with a smooth action of a Lie group $ G $; they form the $ G $- submodule $ \Gamma ( E) _ {G} \subset \Gamma ( E) $( cf. [5]). If $ G $ is a compact group, the submodule $ \Gamma ( E) _ {G} $ is dense in $ \Gamma ( E) $. In case $ X $ is the symmetric homogeneous space of $ G $, the decomposition of the $ G $- module $ \Gamma ( E) _ {G} $ into simple components has been studied (cf. [3]). If $ X $ is the compact homogeneous space of a semi-simple Lie group $ G $ without compact factors with a connected stationary subgroup, then

$$ \mathop{\rm dim} \Gamma ( E) _ {G} < \infty $$

(cf. [2]).

References

[1] E. Cartan, "Sur la détermination d'un système orthogonal complet dans un espace de Riemann symmétrique clos" Rend. Circ. Mat. Palermo , 53 (1929) pp. 217–252
[2] Van Cha Dao, "Spherical sections on a compact homogeneous space" Uspekhi Mat. Nauk , 30 : 5 (1975) pp. 203–204 (In Russian)
[3] Yu.V. Dzyadyk, "On the determination of the spectrum of an induced representation on a compact symmetric space" Soviet Math. Dokl. , 16 (1975) pp. 193–197 Dokl. Akad. Nauk SSSR , 220 : 5 (1975) pp. 1019–1022
[4] A.M. Lukatskii, Uspekhi Mat. Nauk , 26 : 5 (1971) pp. 212–213
[5] A.L. Onishchik, "On invariants and almost invariants of compact transformation groups" Trans. Moscow Math. Soc. , 35 (1976) pp. 237–267 Trudy Moskov. Mat. Obshch. , 35 (1976) pp. 235–264

Comments

A more common name for "representation function" is $ G $- finite function. The term "spherical function" usually has another meaning, see (the editorial comments to) Spherical functions. For Cartan's work [1] on the decomposition of $ F( X, \mathbf C ) _ {G} $ in the case of a compact symmetric space $ X $ see [a1], Chapt. V.

References

[a1] S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4
How to Cite This Entry:
Representation function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Representation_function&oldid=11929
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article