Namespaces
Variants
Actions

Difference between revisions of "Rational surface"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing spaces)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A two-dimensional [[Algebraic variety|algebraic variety]], defined over an algebraically closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r0776501.png" />, whose field of rational functions is a purely [[Transcendental extension|transcendental extension]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r0776502.png" /> of degree 2. Every rational surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r0776503.png" /> is birationally isomorphic to the projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r0776504.png" />.
+
<!--
 +
r0776501.png
 +
$#A+1 = 52 n = 0
 +
$#C+1 = 52 : ~/encyclopedia/old_files/data/R077/R.0707650 Rational surface
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The [[Geometric genus|geometric genus]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r0776505.png" /> and the [[Irregularity|irregularity]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r0776506.png" /> of a complete smooth rational surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r0776507.png" /> are equal to 0, that is, there are no regular differential 2- or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r0776508.png" />-forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r0776509.png" />. Every multiple genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765010.png" /> of a smooth complete rational surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765011.png" /> is also zero, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765012.png" /> is the canonical divisor of the surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765013.png" />. These birational invariants distinguish the rational surfaces among all algebraic surfaces, that is, any smooth complete algebraic surface with invariants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765014.png" /> is a rational surface (the Castelnuovo rationality criterion). According to another rationality criterion, a smooth algebraic surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765015.png" /> is a rational surface if and only if there is a non-singular rational curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765016.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765017.png" /> with index of self-intersection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765018.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
With the exception of rational surfaces and ruled surfaces, every algebraic surface is birationally isomorphic to a unique minimal model. In the class of rational surfaces there is a countable set of minimal models. It consists of the projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765019.png" /> and the surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765020.png" /> (projectivization of two-dimensional vector bundles over the projective line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765021.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765022.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765024.png" />. In other words, the surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765025.png" /> is a fibration by rational curves over a rational curve with a section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765026.png" /> which is a smooth rational curve with index of self-intersection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765027.png" />. The surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765028.png" /> is isomorphic to the direct product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765029.png" />, and the surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765030.png" /> are obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765031.png" /> by a sequence of elementary transformations (see [[#References|[1]]]).
+
A two-dimensional [[Algebraic variety|algebraic variety]], defined over an algebraically closed field  $  k $,
 +
whose field of rational functions is a purely [[Transcendental extension|transcendental extension]] of  $  k $
 +
of degree 2. Every rational surface  $  X $
 +
is birationally isomorphic to the projective space  $  \mathbf P  ^ {2} $.
 +
 
 +
The [[Geometric genus|geometric genus]]  $  p _ {g} $
 +
and the [[Irregularity|irregularity]]  $  q $
 +
of a complete smooth rational surface  $  X $
 +
are equal to 0, that is, there are no regular differential 2- or  1-forms on  $  X $.
 +
Every multiple genus  $  P _ {n} =  \mathop{\rm dim}  H  ^ {0} ( X , {\mathcal O} _ {X} ( n K _ {X} ) ) $
 +
of a smooth complete rational surface  $  X $
 +
is also zero, where  $  K _ {X} $
 +
is the [[canonical divisor]] of the surface  $  X $.
 +
These birational invariants distinguish the rational surfaces among all algebraic surfaces, that is, any smooth complete algebraic surface with invariants  $  p _ {g} = q = P _ {2} = 0 $
 +
is a rational surface (the Castelnuovo rationality criterion). According to another rationality criterion, a smooth algebraic surface  $  X $
 +
is a rational surface if and only if there is a non-singular rational curve  $  C $
 +
on  $  X $
 +
with index of self-intersection  $  ( C  ^ {2} ) _ {X} > 0 $.
 +
 
 +
With the exception of rational surfaces and ruled surfaces, every algebraic surface is birationally isomorphic to a unique minimal model. In the class of rational surfaces there is a countable set of minimal models. It consists of the projective space $  \mathbf P  ^ {2} $
 +
and the surfaces $  F _ {n} \simeq P ( {\mathcal L} _ {n} ) $ (projectivization of two-dimensional vector bundles over the projective line $  \mathbf P  ^ {1} $),  
 +
$  {\mathcal L} _ {n} \simeq {\mathcal O} _ {\mathbf P  ^ {1}  } \oplus {\mathcal O} _ {\mathbf P  ^ {1}  } ( - n ) $,  
 +
where $  n \geq  0 $
 +
and $  n \neq 1 $.  
 +
In other words, the surface $  F _ {n} $
 +
is a fibration by rational curves over a rational curve with a section $  S _ {n} $
 +
which is a smooth rational curve with index of self-intersection $  ( S _ {n}  ^ {2} ) _ {F} = - n $.  
 +
The surface $  F _ {0} $
 +
is isomorphic to the direct product $  \mathbf P  ^ {1} \times \mathbf P  ^ {1} $,  
 +
and the surfaces $  F _ {n} $
 +
are obtained from $  F _ {0} $
 +
by a sequence of elementary transformations (see [[#References|[1]]]).
  
 
Rational surfaces have a large group of birational transformations (called the group of Cremona transformations).
 
Rational surfaces have a large group of birational transformations (called the group of Cremona transformations).
  
If the anti-canonical sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765032.png" /> on a smooth complete rational surface is ample (cf. [[Ample sheaf|Ample sheaf]]), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765033.png" /> is called a Del Pezzo surface. The greatest integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765034.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765035.png" /> for some divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765036.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765037.png" /> is called the index of the Del Pezzo surface. The index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765038.png" /> is equal to 1, 2 or 3 (see [[#References|[2]]]). A Del Pezzo surface of index 3 is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765039.png" />. For a Del Pezzo surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765040.png" /> of index 2, the rational mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765041.png" /> defined by the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765042.png" /> gives a birational isomorphism onto a quadric in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765043.png" />. Del Pezzo surfaces of index 1 can be obtained by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765044.png" /> monoidal transformations (cf. [[Monoidal transformation|Monoidal transformation]]) of the plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765045.png" /> with centres at points in general position, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765046.png" /> (see [[#References|[2]]]).
+
If the anti-canonical sheaf $  {\mathcal O} _ {X} ( - K _ {X} ) $
 +
on a smooth complete rational surface is ample (cf. [[Ample sheaf|Ample sheaf]]), then $  X $
 +
is called a Del Pezzo surface. The greatest integer r > 0 $
 +
such that $  - K _ {X} \sim r D $
 +
for some divisor $  D $
 +
on $  X $
 +
is called the index of the Del Pezzo surface. The index r $
 +
is equal to 1, 2 or 3 (see [[#References|[2]]]). A Del Pezzo surface of index 3 is isomorphic to $  \mathbf P  ^ {2} $.  
 +
For a Del Pezzo surface $  X $
 +
of index 2, the rational mapping $  {\mathcal O} _ {X} : X \rightarrow \mathbf P  ^ {3} $
 +
defined by the sheaf $  {\mathcal O} _ {X} ( D) $
 +
gives a birational isomorphism onto a quadric in $  \mathbf P  ^ {3} $.  
 +
Del Pezzo surfaces of index 1 can be obtained by $  n $
 +
monoidal transformations (cf. [[Monoidal transformation|Monoidal transformation]]) of the plane $  \mathbf P  ^ {2} $
 +
with centres at points in general position, where $  1 \leq  n \leq  8 $ (see [[#References|[2]]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich,   "Algebraic surfaces" ''Proc. Steklov Inst. Math.'' , '''75''' (1967) ''Trudy Mat. Inst. Steklov.'' , '''75''' (1965)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.A. Iskovskii,   "Anticanonical models of three-dimensional algebraic varieties" , ''Current problems in mathematics'' , '''12''' , Moscow (1979) pp. 59–157; 239 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R. Hartshorne,   "Algebraic geometry" , Springer (1977)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Algebraic surfaces" ''Proc. Steklov Inst. Math.'' , '''75''' (1967) ''Trudy Mat. Inst. Steklov.'' , '''75''' (1965) {{MR|1392959}} {{MR|1060325}} {{ZBL|0830.00008}} {{ZBL|0733.14015}} {{ZBL|0832.14026}} {{ZBL|0509.14036}} {{ZBL|0492.14024}} {{ZBL|0379.14006}} {{ZBL|0253.14006}} {{ZBL|0154.21001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.A. Iskovskii, "Anticanonical models of three-dimensional algebraic varieties" , ''Current problems in mathematics'' , '''12''' , Moscow (1979) pp. 59–157; 239 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table>
 
 
 
 
  
 
====Comments====
 
====Comments====
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765047.png" /> is defined over a, not necessarily algebraically closed, field and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765048.png" /> is birationally equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765049.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765050.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765051.png" /> is said to be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077650/r07765053.png" />-rational surface.
+
If $  X $
 +
is defined over a, not necessarily algebraically closed, field and $  X $
 +
is birationally equivalent to $  \mathbf P _ {k}  ^ {2} $
 +
over $  k $,  
 +
then $  X $
 +
is said to be a $  k $-rational surface.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Beauville,   "Surfaces algébriques complexes" ''Astérisque'' , '''54''' (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Semple,   L. Roth,   "Introduction to algebraic geometry" , Oxford Univ. Press (1985)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Beauville, "Surfaces algébriques complexes" ''Astérisque'' , '''54''' (1978) {{MR|0485887}} {{ZBL|0394.14014}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Semple, L. Roth, "Introduction to algebraic geometry" , Oxford Univ. Press (1985) {{MR|0814690}} {{ZBL|0576.14001}} </TD></TR></table>

Latest revision as of 16:26, 2 March 2022


A two-dimensional algebraic variety, defined over an algebraically closed field $ k $, whose field of rational functions is a purely transcendental extension of $ k $ of degree 2. Every rational surface $ X $ is birationally isomorphic to the projective space $ \mathbf P ^ {2} $.

The geometric genus $ p _ {g} $ and the irregularity $ q $ of a complete smooth rational surface $ X $ are equal to 0, that is, there are no regular differential 2- or 1-forms on $ X $. Every multiple genus $ P _ {n} = \mathop{\rm dim} H ^ {0} ( X , {\mathcal O} _ {X} ( n K _ {X} ) ) $ of a smooth complete rational surface $ X $ is also zero, where $ K _ {X} $ is the canonical divisor of the surface $ X $. These birational invariants distinguish the rational surfaces among all algebraic surfaces, that is, any smooth complete algebraic surface with invariants $ p _ {g} = q = P _ {2} = 0 $ is a rational surface (the Castelnuovo rationality criterion). According to another rationality criterion, a smooth algebraic surface $ X $ is a rational surface if and only if there is a non-singular rational curve $ C $ on $ X $ with index of self-intersection $ ( C ^ {2} ) _ {X} > 0 $.

With the exception of rational surfaces and ruled surfaces, every algebraic surface is birationally isomorphic to a unique minimal model. In the class of rational surfaces there is a countable set of minimal models. It consists of the projective space $ \mathbf P ^ {2} $ and the surfaces $ F _ {n} \simeq P ( {\mathcal L} _ {n} ) $ (projectivization of two-dimensional vector bundles over the projective line $ \mathbf P ^ {1} $), $ {\mathcal L} _ {n} \simeq {\mathcal O} _ {\mathbf P ^ {1} } \oplus {\mathcal O} _ {\mathbf P ^ {1} } ( - n ) $, where $ n \geq 0 $ and $ n \neq 1 $. In other words, the surface $ F _ {n} $ is a fibration by rational curves over a rational curve with a section $ S _ {n} $ which is a smooth rational curve with index of self-intersection $ ( S _ {n} ^ {2} ) _ {F} = - n $. The surface $ F _ {0} $ is isomorphic to the direct product $ \mathbf P ^ {1} \times \mathbf P ^ {1} $, and the surfaces $ F _ {n} $ are obtained from $ F _ {0} $ by a sequence of elementary transformations (see [1]).

Rational surfaces have a large group of birational transformations (called the group of Cremona transformations).

If the anti-canonical sheaf $ {\mathcal O} _ {X} ( - K _ {X} ) $ on a smooth complete rational surface is ample (cf. Ample sheaf), then $ X $ is called a Del Pezzo surface. The greatest integer $ r > 0 $ such that $ - K _ {X} \sim r D $ for some divisor $ D $ on $ X $ is called the index of the Del Pezzo surface. The index $ r $ is equal to 1, 2 or 3 (see [2]). A Del Pezzo surface of index 3 is isomorphic to $ \mathbf P ^ {2} $. For a Del Pezzo surface $ X $ of index 2, the rational mapping $ {\mathcal O} _ {X} : X \rightarrow \mathbf P ^ {3} $ defined by the sheaf $ {\mathcal O} _ {X} ( D) $ gives a birational isomorphism onto a quadric in $ \mathbf P ^ {3} $. Del Pezzo surfaces of index 1 can be obtained by $ n $ monoidal transformations (cf. Monoidal transformation) of the plane $ \mathbf P ^ {2} $ with centres at points in general position, where $ 1 \leq n \leq 8 $ (see [2]).

References

[1] I.R. Shafarevich, "Algebraic surfaces" Proc. Steklov Inst. Math. , 75 (1967) Trudy Mat. Inst. Steklov. , 75 (1965) MR1392959 MR1060325 Zbl 0830.00008 Zbl 0733.14015 Zbl 0832.14026 Zbl 0509.14036 Zbl 0492.14024 Zbl 0379.14006 Zbl 0253.14006 Zbl 0154.21001
[2] V.A. Iskovskii, "Anticanonical models of three-dimensional algebraic varieties" , Current problems in mathematics , 12 , Moscow (1979) pp. 59–157; 239 (In Russian)
[3] R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001

Comments

If $ X $ is defined over a, not necessarily algebraically closed, field and $ X $ is birationally equivalent to $ \mathbf P _ {k} ^ {2} $ over $ k $, then $ X $ is said to be a $ k $-rational surface.

References

[a1] A. Beauville, "Surfaces algébriques complexes" Astérisque , 54 (1978) MR0485887 Zbl 0394.14014
[a2] J. Semple, L. Roth, "Introduction to algebraic geometry" , Oxford Univ. Press (1985) MR0814690 Zbl 0576.14001
How to Cite This Entry:
Rational surface. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rational_surface&oldid=11514
This article was adapted from an original article by Vik.S. Kulikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article