Namespaces
Variants
Actions

Difference between revisions of "Quasi-informational extension"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''of a non-cooperative game <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q0765501.png" />''
+
<!--
 +
q0765501.png
 +
$#A+1 = 39 n = 0
 +
$#C+1 = 39 : ~/encyclopedia/old_files/data/Q076/Q.0706550 Quasi\AAhinformational extension
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A [[Non-cooperative game|non-cooperative game]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q0765502.png" /> for which mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q0765503.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q0765504.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q0765505.png" />, are given that satisfy the following conditions for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q0765506.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q0765507.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q0765508.png" />: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q0765509.png" />; and 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655010.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655011.png" /> is the composite of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655012.png" /> and the projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655013.png" />. A quasi-informational extension of the game <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655014.png" /> can be interpreted as the result of setting up the above scheme of interaction of players in the choice process for their strategies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655015.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655016.png" />. The strategies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655017.png" /> correspond to the rules determining the behaviour of player <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655018.png" /> in any situation that he or she may encounter. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655019.png" /> associates the rule of behaviour of the players with a realization of them, that is, with the set of strategies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655021.png" />, that will be chosen by the players adhering to the given rules. Condition 1) of the definition of a quasi-informational extension is then the definition of the pay-off function of the new game <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655022.png" />, while condition 2) expresses the preservation by each player of the old strategies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655023.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
A situation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655024.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655025.png" /> is the image of the equilibrium situation of some quasi-informational extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655026.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655027.png" /> under the corresponding mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655028.png" /> if and only if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655030.png" /> there is a situation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655031.png" /> such that
+
''of a non-cooperative game  $  \Gamma = \langle  J , \{ S _ {i} \} _ {i \in J }  , \{ H _ {i} \} _ {i \in J }  \rangle $''
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655032.png" /></td> </tr></table>
+
A [[Non-cooperative game|non-cooperative game]]  $  \widetilde \Gamma  = \langle  J , \{ \widetilde{S}  {} _ {i} \} _ {i \in J }  , \{ \widetilde{H}  {} _ {i} \} _ {i \in J }  \rangle $
 +
for which mappings  $  \pi : \widetilde{S}  \rightarrow S $
 +
and  $  c _ {i} : S _ {i} \rightarrow \widetilde{S}  _ {i} $,
 +
$  i \in J $,
 +
are given that satisfy the following conditions for all  $  i \in J $,
 +
$  s _ {i} \in S _ {i} $,
 +
$  \widetilde{s}  \in \widetilde{S}  $:  
 +
1)  $  \widetilde{H}  _ {i} = H _ {i} \circ \pi $;  
 +
and 2)  $  \pi _ {i} ( \widetilde{s}  \| c _ {i} ( s _ {i} ) ) = s _ {i} $,
 +
where  $  \pi _ {i} $
 +
is the composite of  $  \pi $
 +
and the projection  $  S \rightarrow S _ {i} $.
 +
A quasi-informational extension of the game  $  \Gamma $
 +
can be interpreted as the result of setting up the above scheme of interaction of players in the choice process for their strategies  $  s _ {i} $
 +
in  $  \Gamma $.
 +
The strategies  $  s _ {i} $
 +
correspond to the rules determining the behaviour of player  $  i $
 +
in any situation that he or she may encounter. The mapping  $  \pi $
 +
associates the rule of behaviour of the players with a realization of them, that is, with the set of strategies  $  s _ {i} $,
 +
$  i \in J $,
 +
that will be chosen by the players adhering to the given rules. Condition 1) of the definition of a quasi-informational extension is then the definition of the pay-off function of the new game  $  \widetilde \Gamma  $,
 +
while condition 2) expresses the preservation by each player of the old strategies  $  s _ {i} \in S _ {i} $.
  
The notion of a quasi-informational extension is particularly widely used in the theory of games with a hierarchy structure (cf. [[Game with a hierarchy structure|Game with a hierarchy structure]]), where the informal problem of optimizing an informational scheme is transformed into the problem of constructing a quasi-informational extension of a given game providing the first player with an optimum result. One also considers classes of quasi-informational extensions satisfying conditions that express some or other restrictions on the information available to the players. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655033.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655034.png" />-person game <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655035.png" />, then one says that in the quasi-informational extension player 1 does not possess (proper) information about the strategy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655036.png" /> if for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655037.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655038.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076550/q07655039.png" />. The best of the quasi-informational extensions satisfying this condition is, for example,  "game G3" , whereas the best of the quasi-informational extension is  "game G2" .
+
A situation  $  s  ^ {*} $
 +
of  $  \Gamma $
 +
is the image of the equilibrium situation of some quasi-informational extension  $  \widetilde \Gamma  $
 +
of  $  \Gamma $
 +
under the corresponding mapping  $  \pi $
 +
if and only if for any  $  i \in J $
 +
and  $  \overline{s}\; _ {i} \in S _ {i} $
 +
there is a situation  $  s \in S $
 +
such that
 +
 
 +
$$
 +
H _ {i} ( s  ^ {*} )  \geq  H _ {i} ( s \| \overline{s}\; _ {i} ) .
 +
$$
 +
 
 +
The notion of a quasi-informational extension is particularly widely used in the theory of games with a hierarchy structure (cf. [[Game with a hierarchy structure|Game with a hierarchy structure]]), where the informal problem of optimizing an informational scheme is transformed into the problem of constructing a quasi-informational extension of a given game providing the first player with an optimum result. One also considers classes of quasi-informational extensions satisfying conditions that express some or other restrictions on the information available to the players. For example, if $  \Gamma $
 +
is a $  2 $-
 +
person game $  ( J = \{ 1 , 2 \} ) $,  
 +
then one says that in the quasi-informational extension player 1 does not possess (proper) information about the strategy $  s _ {2} $
 +
if for each $  \widetilde{s}  _ {1} \in \widetilde{S}  _ {1} $
 +
there is an $  s _ {1} \in S _ {1} $
 +
such that $  \pi ( \widetilde{s}  _ {1} , \widetilde{S}  _ {2} ) \supseteq \{ s _ {1} \} \times S _ {2} $.  
 +
The best of the quasi-informational extensions satisfying this condition is, for example,  "game G3" , whereas the best of the quasi-informational extension is  "game G2" .
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Yu.B. Germeier,  "Non-antagonistic games" , Reidel  (1986)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.S. Kukushkin,  V.V. Morozov,  "The theory of non-antagonistic games" , Moscow  (1977)  pp. Chapt. 2  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Yu.B. Germeier,  "Non-antagonistic games" , Reidel  (1986)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.S. Kukushkin,  V.V. Morozov,  "The theory of non-antagonistic games" , Moscow  (1977)  pp. Chapt. 2  (In Russian)</TD></TR></table>

Latest revision as of 08:09, 6 June 2020


of a non-cooperative game $ \Gamma = \langle J , \{ S _ {i} \} _ {i \in J } , \{ H _ {i} \} _ {i \in J } \rangle $

A non-cooperative game $ \widetilde \Gamma = \langle J , \{ \widetilde{S} {} _ {i} \} _ {i \in J } , \{ \widetilde{H} {} _ {i} \} _ {i \in J } \rangle $ for which mappings $ \pi : \widetilde{S} \rightarrow S $ and $ c _ {i} : S _ {i} \rightarrow \widetilde{S} _ {i} $, $ i \in J $, are given that satisfy the following conditions for all $ i \in J $, $ s _ {i} \in S _ {i} $, $ \widetilde{s} \in \widetilde{S} $: 1) $ \widetilde{H} _ {i} = H _ {i} \circ \pi $; and 2) $ \pi _ {i} ( \widetilde{s} \| c _ {i} ( s _ {i} ) ) = s _ {i} $, where $ \pi _ {i} $ is the composite of $ \pi $ and the projection $ S \rightarrow S _ {i} $. A quasi-informational extension of the game $ \Gamma $ can be interpreted as the result of setting up the above scheme of interaction of players in the choice process for their strategies $ s _ {i} $ in $ \Gamma $. The strategies $ s _ {i} $ correspond to the rules determining the behaviour of player $ i $ in any situation that he or she may encounter. The mapping $ \pi $ associates the rule of behaviour of the players with a realization of them, that is, with the set of strategies $ s _ {i} $, $ i \in J $, that will be chosen by the players adhering to the given rules. Condition 1) of the definition of a quasi-informational extension is then the definition of the pay-off function of the new game $ \widetilde \Gamma $, while condition 2) expresses the preservation by each player of the old strategies $ s _ {i} \in S _ {i} $.

A situation $ s ^ {*} $ of $ \Gamma $ is the image of the equilibrium situation of some quasi-informational extension $ \widetilde \Gamma $ of $ \Gamma $ under the corresponding mapping $ \pi $ if and only if for any $ i \in J $ and $ \overline{s}\; _ {i} \in S _ {i} $ there is a situation $ s \in S $ such that

$$ H _ {i} ( s ^ {*} ) \geq H _ {i} ( s \| \overline{s}\; _ {i} ) . $$

The notion of a quasi-informational extension is particularly widely used in the theory of games with a hierarchy structure (cf. Game with a hierarchy structure), where the informal problem of optimizing an informational scheme is transformed into the problem of constructing a quasi-informational extension of a given game providing the first player with an optimum result. One also considers classes of quasi-informational extensions satisfying conditions that express some or other restrictions on the information available to the players. For example, if $ \Gamma $ is a $ 2 $- person game $ ( J = \{ 1 , 2 \} ) $, then one says that in the quasi-informational extension player 1 does not possess (proper) information about the strategy $ s _ {2} $ if for each $ \widetilde{s} _ {1} \in \widetilde{S} _ {1} $ there is an $ s _ {1} \in S _ {1} $ such that $ \pi ( \widetilde{s} _ {1} , \widetilde{S} _ {2} ) \supseteq \{ s _ {1} \} \times S _ {2} $. The best of the quasi-informational extensions satisfying this condition is, for example, "game G3" , whereas the best of the quasi-informational extension is "game G2" .

References

[1] Yu.B. Germeier, "Non-antagonistic games" , Reidel (1986) (Translated from Russian)
[2] N.S. Kukushkin, V.V. Morozov, "The theory of non-antagonistic games" , Moscow (1977) pp. Chapt. 2 (In Russian)
How to Cite This Entry:
Quasi-informational extension. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-informational_extension&oldid=13056
This article was adapted from an original article by N.S. Kukushkin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article