Namespaces
Variants
Actions

Difference between revisions of "Nuclear-C*-algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A [[C*-algebra|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n0678302.png" />-algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n0678303.png" /> with the following property: For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n0678304.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n0678305.png" /> there is on the algebraic tensor product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n0678306.png" /> a unique norm such that the completion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n0678307.png" /> with respect to this norm is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n0678308.png" />-algebra. Thus, relative to tensor products, nuclear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n0678309.png" />-algebras behave similarly to nuclear spaces (cf. [[Nuclear space|Nuclear space]]) (although infinite-dimensional nuclear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783010.png" />-algebras are not nuclear spaces). The class of nuclear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783011.png" />-algebras includes all type I <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783012.png" />-algebras. This class is closed with respect to the inductive limit. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783013.png" /> is a closed two-sided ideal in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783014.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783015.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783016.png" /> is nuclear if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783018.png" /> are. A subalgebra of a nuclear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783019.png" />-algebra need not be a nuclear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783020.png" />-algebra. The tensor product of two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783021.png" />-algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783023.png" /> is nuclear if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783025.png" /> (both) are nuclear. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783026.png" /> is an amenable locally compact group, then the enveloping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783027.png" />-algebra of the group algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783028.png" /> is nuclear (the converse is not true). Each [[Factor representation|factor representation]] of a nuclear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783029.png" />-algebra is hyperfinite, that is, the [[Von Neumann algebra|von Neumann algebra]] generated by this representation can be obtained from an increasing sequence of finite-dimensional factors (matrix algebras). Any factor state on a nuclear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783031.png" />-subalgebra of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783032.png" />-algebra can be extended to a factor state on the whole algebra.
+
<!--
 +
n0678302.png
 +
$#A+1 = 52 n = 2
 +
$#C+1 = 52 : ~/encyclopedia/old_files/data/N067/N.0607830 Nuclear \BMI C sup \ast\EMI\AAhalgebra
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783033.png" /> be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783034.png" />-algebra of all bounded linear operators on a Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783035.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783036.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783037.png" />-algebra of operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783038.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783039.png" /> is nuclear, then its weak closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783040.png" /> is an injective von Neumann algebra, that is, there is a projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783041.png" /> with norm one; in this case the commutant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783042.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783043.png" /> is also injective. An arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783044.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783045.png" /> is nuclear if and only if its enveloping von Neumann algebra is injective.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783046.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783047.png" /> is nuclear if and only if it has the completely positive approximation property, i.e. the identity operator in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783049.png" /> can be approximated in the strong operator topology by linear operators of finite rank with norm not exceeding 1, and with the additional property of  "complete positivity" [[#References|[1]]].
+
A [[C*-algebra| $  C  ^ {*} $-
 +
algebra]]  $  A $
 +
with the following property: For any  $  C  ^ {*} $-
 +
algebra  $  B $
 +
there is on the algebraic tensor product  $  A \otimes B $
 +
a unique norm such that the completion of  $  A \otimes B $
 +
with respect to this norm is a  $  C  ^ {*} $-
 +
algebra. Thus, relative to tensor products, nuclear  $  C  ^ {*} $-
 +
algebras behave similarly to nuclear spaces (cf. [[Nuclear space|Nuclear space]]) (although infinite-dimensional nuclear  $  C  ^ {*} $-
 +
algebras are not nuclear spaces). The class of nuclear  $  C  ^ {*} $-
 +
algebras includes all type I  $  C  ^ {*} $-
 +
algebras. This class is closed with respect to the inductive limit. If  $  I $
 +
is a closed two-sided ideal in a  $  C  ^ {*} $-
 +
algebra  $  A $,
 +
then  $  A $
 +
is nuclear if and only if $  I $
 +
and  $  A/I $
 +
are. A subalgebra of a nuclear  $  C  ^ {*} $-
 +
algebra need not be a nuclear  $  C  ^ {*} $-
 +
algebra. The tensor product of two  $  C  ^ {*} $-
 +
algebras  $  A $
 +
and  $  B $
 +
is nuclear if and only if  $  A $
 +
and  $  B $(
 +
both) are nuclear. If  $  G $
 +
is an amenable locally compact group, then the enveloping  $  C  ^ {*} $-
 +
algebra of the group algebra  $  L _ {1} ( G) $
 +
is nuclear (the converse is not true). Each [[Factor representation|factor representation]] of a nuclear  $ C ^ {*} $-
 +
algebra is hyperfinite, that is, the [[Von Neumann algebra|von Neumann algebra]] generated by this representation can be obtained from an increasing sequence of finite-dimensional factors (matrix algebras). Any factor state on a nuclear  $  C  ^ {*} $-
 +
subalgebra of a  $  C  ^ {*} $-
 +
algebra can be extended to a factor state on the whole algebra.
  
Every nuclear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783050.png" />-algebra has the approximation and bounded approximation properties (see [[Nuclear operator|Nuclear operator]]). There is, however, a non-nuclear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783051.png" />-algebra with the bounded approximation property. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783052.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783053.png" /> of all bounded operators on an infinite-dimensional Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783054.png" /> does not have the completely positive approximation property, or even the approximation property, so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783055.png" /> is not nuclear.
+
Let  $  L ( H) $
 +
be the  $  C  ^ {*} $-
 +
algebra of all bounded linear operators on a Hilbert space  $  H $,
 +
and let  $  A $
 +
be a  $  C  ^ {*} $-
 +
algebra of operators on  $  H $.
 +
If  $  A $
 +
is nuclear, then its weak closure  $  \overline{A}\; $
 +
is an injective von Neumann algebra, that is, there is a projection  $  L ( H) \rightarrow \overline{A}\; $
 +
with norm one; in this case the commutant  $  A  ^  \prime  $
 +
of  $  A $
 +
is also injective. An arbitrary  $  C  ^ {*} $-
 +
algebra  $  A $
 +
is nuclear if and only if its enveloping von Neumann algebra is injective.
 +
 
 +
A  $  C  ^ {*} $-
 +
algebra  $  A $
 +
is nuclear if and only if it has the completely positive approximation property, i.e. the identity operator in  $  A $
 +
can be approximated in the strong operator topology by linear operators of finite rank with norm not exceeding 1, and with the additional property of  "complete positivity" [[#References|[1]]].
 +
 
 +
Every nuclear  $  C  ^ {*} $-
 +
algebra has the approximation and bounded approximation properties (see [[Nuclear operator|Nuclear operator]]). There is, however, a non-nuclear $  C  ^ {*} $-
 +
algebra with the bounded approximation property. The $  C  ^ {*} $-
 +
algebra $  L ( H) $
 +
of all bounded operators on an infinite-dimensional Hilbert space $  H $
 +
does not have the completely positive approximation property, or even the approximation property, so that $  L ( H) $
 +
is not nuclear.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.C. Lance,  "Tensor products and nuclear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783056.png" />-algebras"  R.V. Kadison (ed.) , ''Operator algebras and applications'' , ''Proc. Symp. Pure Math.'' , '''38''' , Amer. Math. Soc.  (1982)  pp. 379–399</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  O. Bratteli,  D.W. Robinson,  "Operator algebras and quantum statistical mechanics" , '''1''' , Springer  (1979)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.C. Lance,  "Tensor products and nuclear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783056.png" />-algebras"  R.V. Kadison (ed.) , ''Operator algebras and applications'' , ''Proc. Symp. Pure Math.'' , '''38''' , Amer. Math. Soc.  (1982)  pp. 379–399</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  O. Bratteli,  D.W. Robinson,  "Operator algebras and quantum statistical mechanics" , '''1''' , Springer  (1979)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.V. Kadison,  J.R. Ringrose,  "Fundamentals of the theory of operator algebras" , '''1–2''' , Acad. Press  (1983)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G.K. Pedersen,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783057.png" />-algebras and their automorphism groups" , Acad. Press  (1979)  pp. Sect. 8.15.15</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.V. Kadison,  J.R. Ringrose,  "Fundamentals of the theory of operator algebras" , '''1–2''' , Acad. Press  (1983)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G.K. Pedersen,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783057.png" />-algebras and their automorphism groups" , Acad. Press  (1979)  pp. Sect. 8.15.15</TD></TR></table>

Revision as of 08:03, 6 June 2020


A $ C ^ {*} $- algebra $ A $ with the following property: For any $ C ^ {*} $- algebra $ B $ there is on the algebraic tensor product $ A \otimes B $ a unique norm such that the completion of $ A \otimes B $ with respect to this norm is a $ C ^ {*} $- algebra. Thus, relative to tensor products, nuclear $ C ^ {*} $- algebras behave similarly to nuclear spaces (cf. Nuclear space) (although infinite-dimensional nuclear $ C ^ {*} $- algebras are not nuclear spaces). The class of nuclear $ C ^ {*} $- algebras includes all type I $ C ^ {*} $- algebras. This class is closed with respect to the inductive limit. If $ I $ is a closed two-sided ideal in a $ C ^ {*} $- algebra $ A $, then $ A $ is nuclear if and only if $ I $ and $ A/I $ are. A subalgebra of a nuclear $ C ^ {*} $- algebra need not be a nuclear $ C ^ {*} $- algebra. The tensor product of two $ C ^ {*} $- algebras $ A $ and $ B $ is nuclear if and only if $ A $ and $ B $( both) are nuclear. If $ G $ is an amenable locally compact group, then the enveloping $ C ^ {*} $- algebra of the group algebra $ L _ {1} ( G) $ is nuclear (the converse is not true). Each factor representation of a nuclear $ C ^ {*} $- algebra is hyperfinite, that is, the von Neumann algebra generated by this representation can be obtained from an increasing sequence of finite-dimensional factors (matrix algebras). Any factor state on a nuclear $ C ^ {*} $- subalgebra of a $ C ^ {*} $- algebra can be extended to a factor state on the whole algebra.

Let $ L ( H) $ be the $ C ^ {*} $- algebra of all bounded linear operators on a Hilbert space $ H $, and let $ A $ be a $ C ^ {*} $- algebra of operators on $ H $. If $ A $ is nuclear, then its weak closure $ \overline{A}\; $ is an injective von Neumann algebra, that is, there is a projection $ L ( H) \rightarrow \overline{A}\; $ with norm one; in this case the commutant $ A ^ \prime $ of $ A $ is also injective. An arbitrary $ C ^ {*} $- algebra $ A $ is nuclear if and only if its enveloping von Neumann algebra is injective.

A $ C ^ {*} $- algebra $ A $ is nuclear if and only if it has the completely positive approximation property, i.e. the identity operator in $ A $ can be approximated in the strong operator topology by linear operators of finite rank with norm not exceeding 1, and with the additional property of "complete positivity" [1].

Every nuclear $ C ^ {*} $- algebra has the approximation and bounded approximation properties (see Nuclear operator). There is, however, a non-nuclear $ C ^ {*} $- algebra with the bounded approximation property. The $ C ^ {*} $- algebra $ L ( H) $ of all bounded operators on an infinite-dimensional Hilbert space $ H $ does not have the completely positive approximation property, or even the approximation property, so that $ L ( H) $ is not nuclear.

References

[1] E.C. Lance, "Tensor products and nuclear -algebras" R.V. Kadison (ed.) , Operator algebras and applications , Proc. Symp. Pure Math. , 38 , Amer. Math. Soc. (1982) pp. 379–399
[2] O. Bratteli, D.W. Robinson, "Operator algebras and quantum statistical mechanics" , 1 , Springer (1979)

Comments

References

[a1] R.V. Kadison, J.R. Ringrose, "Fundamentals of the theory of operator algebras" , 1–2 , Acad. Press (1983)
[a2] G.K. Pedersen, "-algebras and their automorphism groups" , Acad. Press (1979) pp. Sect. 8.15.15
How to Cite This Entry:
Nuclear-C*-algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nuclear-C*-algebra&oldid=16622
This article was adapted from an original article by G.L. Litvinov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article