Namespaces
Variants
Actions

Difference between revisions of "Normal sheaf"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
<!--
 +
n0676401.png
 +
$#A+1 = 83 n = 0
 +
$#C+1 = 83 : ~/encyclopedia/old_files/data/N067/N.0607640 Normal sheaf
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
An analogue to a [[Normal bundle|normal bundle]] in [[Sheaf theory|sheaf theory]]. Let
 
An analogue to a [[Normal bundle|normal bundle]] in [[Sheaf theory|sheaf theory]]. Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676401.png" /></td> </tr></table>
+
$$
 +
( f, f ^ { \# } ): ( Y, {\mathcal O} _ {Y} )  \rightarrow  ( X, {\mathcal O} _ {X} )
 +
$$
  
be a morphism of ringed spaces such that the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676402.png" /> is surjective, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676403.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676404.png" /> is a sheaf of ideals in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676405.png" /> and is, therefore, an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676406.png" />-module. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676407.png" /> is called the conormal sheaf of the morphism and the dual <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676408.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n0676409.png" /> is called the normal sheaf of the morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764010.png" />. These sheaves are, as a rule, examined in the following special cases.
+
be a morphism of ringed spaces such that the homomorphism $  f ^ { \# } : f ^ { * } {\mathcal O} _ {X} \rightarrow {\mathcal O} _ {Y} $
 +
is surjective, and let $  {\mathcal J} = \mathop{\rm Ker}  f ^ { \# } $.  
 +
Then $  {\mathcal J} / {\mathcal J}  ^ {2} $
 +
is a sheaf of ideals in $  f ^ { * } {\mathcal O} _ {X} / {\mathcal J} \cong {\mathcal O} _ {Y} $
 +
and is, therefore, an $  {\mathcal O} _ {Y} $-
 +
module. Here $  {\mathcal N} _ {Y/X}  ^ {*} = ( {\mathcal J} / {\mathcal J}  ^ {2} ) $
 +
is called the conormal sheaf of the morphism and the dual $  {\mathcal O} _ {Y} $-
 +
module $  {\mathcal N} _ {Y/X} = \mathop{\rm Hom} _ { {\mathcal O} _ {Y}  } ( {\mathcal N} _ {Y/X}  ^ {*} , {\mathcal O} _ {Y} ) $
 +
is called the normal sheaf of the morphism $  f $.  
 +
These sheaves are, as a rule, examined in the following special cases.
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764012.png" /> are differentiable manifolds (for example, of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764013.png" />), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764014.png" /> is an immersion. There is an exact sequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764015.png" />-modules
+
1) $  X $
 +
and $  Y $
 +
are differentiable manifolds (for example, of class $  C  ^  \infty  $),  
 +
and $  f: Y \rightarrow X $
 +
is an immersion. There is an exact sequence of $  {\mathcal O} _ {Y} $-
 +
modules
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764016.png" /></td> </tr></table>
+
$$
 +
0 \rightarrow  {\mathcal N} _ {Y/X}  ^ {*}  \mathop \rightarrow \limits ^  \delta  \
 +
f ^ { * } \Omega _ {X}  ^ {1}  \rightarrow  \Omega _ {Y}  ^ {1}  \rightarrow  0,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764018.png" /> are the sheaves of germs of smooth <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764019.png" />-forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764021.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764022.png" /> is defined as differentiation of functions. The dual exact sequence
+
where $  \Omega _ {X}  ^ {1} $
 +
and $  \Omega _ {Y}  ^ {1} $
 +
are the sheaves of germs of smooth $  1 $-
 +
forms on $  X $
 +
and $  Y $,  
 +
and $  \delta $
 +
is defined as differentiation of functions. The dual exact sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764023.png" /></td> </tr></table>
+
$$
 +
0 \rightarrow  {\mathcal T} _ {Y}  \rightarrow  f ^ { * } {\mathcal T} _ {X}  \rightarrow  {\mathcal N} _ {Y/X}  \rightarrow  0,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764025.png" /> are the tangent sheaves on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764027.png" />, shows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764028.png" /> is isomorphic to the sheaf of germs of smooth sections of the [[Normal bundle|normal bundle]] of the immersion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764029.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764030.png" /> is an immersed submanifold, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764032.png" /> are called the normal and conormal sheaves of the submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764033.png" />.
+
where $  {\mathcal T} _ {X} $
 +
and $  {\mathcal T} _ {Y} $
 +
are the tangent sheaves on $  X $
 +
and $  Y $,  
 +
shows that $  {\mathcal N} _ {Y/X} $
 +
is isomorphic to the sheaf of germs of smooth sections of the [[Normal bundle|normal bundle]] of the immersion $  f $.  
 +
If $  Y $
 +
is an immersed submanifold, then $  {\mathcal N} _ {Y/X} $
 +
and $  {\mathcal N} _ {Y/X}  ^ {*} $
 +
are called the normal and conormal sheaves of the submanifold $  Y $.
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764034.png" /> is an irreducible separable scheme of finite type over an algebraically closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764036.png" /> is a closed subscheme of it and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764037.png" /> is an imbedding. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764039.png" /> are called the normal and conormal sheaves of the subscheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764040.png" />. There is also an exact sequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764041.png" />-modules
+
2) $  ( X, {\mathcal O} _ {X} ) $
 +
is an irreducible separable scheme of finite type over an algebraically closed field $  k $,
 +
$  ( Y, {\mathcal O} _ {Y} ) $
 +
is a closed subscheme of it and $  f: Y \rightarrow X $
 +
is an imbedding. Then $  {\mathcal N} _ {Y/X} $
 +
and $  {\mathcal N} _ {Y/X}  ^ {*} $
 +
are called the normal and conormal sheaves of the subscheme $  Y $.  
 +
There is also an exact sequence of $  {\mathcal O} _ {Y} $-
 +
modules
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764042.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
{\mathcal N} _ {Y/X}  ^ {*}  \mathop \rightarrow \limits ^  \delta    \Omega _ {X} \otimes {\mathcal O} _ {Y}  \rightarrow \
 +
\Omega _ {Y}  \rightarrow  0,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764044.png" /> are the sheaves of differentials on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764046.png" />. The sheaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764048.png" /> are quasi-coherent, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764049.png" /> is a Noetherian scheme, then they are coherent. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764050.png" /> is a non-singular variety over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764052.png" /> is a non-singular variety, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764053.png" /> is locally free and the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764054.png" /> in (*) is injective. In this case one obtains the dual exact sequence
+
where $  \Omega _ {X} $
 +
and $  \Omega _ {Y} $
 +
are the sheaves of differentials on $  X $
 +
and $  Y $.  
 +
The sheaves $  {\mathcal N} _ {Y/X}  ^ {*} $
 +
and $  {\mathcal N} _ {Y/X} $
 +
are quasi-coherent, and if $  X $
 +
is a Noetherian scheme, then they are coherent. If $  X $
 +
is a non-singular variety over $  k $
 +
and $  Y $
 +
is a non-singular variety, then $  {\mathcal N} _ {Y/X}  ^ {*} $
 +
is locally free and the homomorphism $  \delta $
 +
in (*) is injective. In this case one obtains the dual exact sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764055.png" /></td> </tr></table>
+
$$
 +
0 \rightarrow  {\mathcal T} _ {Y}  \rightarrow  {\mathcal T} _ {X} \otimes {\mathcal O} _ {Y}  \rightarrow \
 +
{\mathcal N} _ {Y/X}  \rightarrow  0,
 +
$$
  
so that the normal sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764056.png" /> is locally free of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764057.png" /> corresponding to the normal bundle over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764058.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764059.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764060.png" /> is the invertible sheaf corresponding to the divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764061.png" />.
+
so that the normal sheaf $  {\mathcal N} _ {Y/X} $
 +
is locally free of rank $  r = \mathop{\rm codim}  Y $
 +
corresponding to the normal bundle over $  Y $.  
 +
In particular, if $  r = 1 $,  
 +
then $  {\mathcal N} _ {Y/X} $
 +
is the invertible sheaf corresponding to the divisor $  Y $.
  
In terms of normal sheaves one can express the self-intersection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764062.png" /> of a non-singular subvariety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764063.png" />. Namely, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764064.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764065.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764066.png" />-th [[Chern class|Chern class]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764067.png" /> is the homomorphism of Chow rings (cf. [[Chow ring|Chow ring]]) corresponding to the imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764068.png" />.
+
In terms of normal sheaves one can express the self-intersection $  Y \cdot Y $
 +
of a non-singular subvariety $  Y \subset  X $.  
 +
Namely, $  Y \cdot Y = f _ {*} c _ {r} ( {\mathcal N} _ {Y/X} ) $,  
 +
where $  c _ {r} $
 +
is the $  r $-
 +
th [[Chern class|Chern class]] and $  f _ {*} : A ( Y) \rightarrow A ( X) $
 +
is the homomorphism of Chow rings (cf. [[Chow ring|Chow ring]]) corresponding to the imbedding $  f: Y \rightarrow X $.
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764069.png" /> is a complex space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764070.png" /> is a closed analytic subspace of it and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764071.png" /> is the imbedding. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764072.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764073.png" /> are called the normal and conormal sheaves of the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764074.png" />; they are coherent. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764075.png" /> is an analytic manifold and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764076.png" /> an analytic submanifold of it, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764077.png" /> is the sheaf of germs of holomorphic sections of the normal bundle over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764078.png" />.
+
3) $  ( X, {\mathcal O} _ {X} ) $
 +
is a complex space, $  ( Y, {\mathcal O} _ {Y} ) $
 +
is a closed analytic subspace of it and $  f $
 +
is the imbedding. Then $  {\mathcal N} _ {Y/X} $
 +
and $  {\mathcal N} _ {Y/X}  ^ {*} $
 +
are called the normal and conormal sheaves of the subspace $  Y $;  
 +
they are coherent. If $  X $
 +
is an analytic manifold and $  Y $
 +
an analytic submanifold of it, then $  {\mathcal N} _ {Y/X} $
 +
is the sheaf of germs of holomorphic sections of the normal bundle over $  Y $.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich,   "Basic algebraic geometry" , Springer (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Hartshorne,   "Algebraic geometry" , Springer (1977)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table>
 
 
 
 
  
 
====Comments====
 
====Comments====
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764079.png" /> is a non-singular variety over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764080.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764081.png" /> is a subscheme of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764082.png" /> that is locally a complete intersection, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764083.png" /> is locally free.
+
If $  X $
 +
is a non-singular variety over $  k $
 +
and $  Y $
 +
is a subscheme of $  X $
 +
that is locally a complete intersection, then $  {\mathcal N} _ {Y/X}  ^ {*} $
 +
is locally free.

Latest revision as of 08:03, 6 June 2020


An analogue to a normal bundle in sheaf theory. Let

$$ ( f, f ^ { \# } ): ( Y, {\mathcal O} _ {Y} ) \rightarrow ( X, {\mathcal O} _ {X} ) $$

be a morphism of ringed spaces such that the homomorphism $ f ^ { \# } : f ^ { * } {\mathcal O} _ {X} \rightarrow {\mathcal O} _ {Y} $ is surjective, and let $ {\mathcal J} = \mathop{\rm Ker} f ^ { \# } $. Then $ {\mathcal J} / {\mathcal J} ^ {2} $ is a sheaf of ideals in $ f ^ { * } {\mathcal O} _ {X} / {\mathcal J} \cong {\mathcal O} _ {Y} $ and is, therefore, an $ {\mathcal O} _ {Y} $- module. Here $ {\mathcal N} _ {Y/X} ^ {*} = ( {\mathcal J} / {\mathcal J} ^ {2} ) $ is called the conormal sheaf of the morphism and the dual $ {\mathcal O} _ {Y} $- module $ {\mathcal N} _ {Y/X} = \mathop{\rm Hom} _ { {\mathcal O} _ {Y} } ( {\mathcal N} _ {Y/X} ^ {*} , {\mathcal O} _ {Y} ) $ is called the normal sheaf of the morphism $ f $. These sheaves are, as a rule, examined in the following special cases.

1) $ X $ and $ Y $ are differentiable manifolds (for example, of class $ C ^ \infty $), and $ f: Y \rightarrow X $ is an immersion. There is an exact sequence of $ {\mathcal O} _ {Y} $- modules

$$ 0 \rightarrow {\mathcal N} _ {Y/X} ^ {*} \mathop \rightarrow \limits ^ \delta \ f ^ { * } \Omega _ {X} ^ {1} \rightarrow \Omega _ {Y} ^ {1} \rightarrow 0, $$

where $ \Omega _ {X} ^ {1} $ and $ \Omega _ {Y} ^ {1} $ are the sheaves of germs of smooth $ 1 $- forms on $ X $ and $ Y $, and $ \delta $ is defined as differentiation of functions. The dual exact sequence

$$ 0 \rightarrow {\mathcal T} _ {Y} \rightarrow f ^ { * } {\mathcal T} _ {X} \rightarrow {\mathcal N} _ {Y/X} \rightarrow 0, $$

where $ {\mathcal T} _ {X} $ and $ {\mathcal T} _ {Y} $ are the tangent sheaves on $ X $ and $ Y $, shows that $ {\mathcal N} _ {Y/X} $ is isomorphic to the sheaf of germs of smooth sections of the normal bundle of the immersion $ f $. If $ Y $ is an immersed submanifold, then $ {\mathcal N} _ {Y/X} $ and $ {\mathcal N} _ {Y/X} ^ {*} $ are called the normal and conormal sheaves of the submanifold $ Y $.

2) $ ( X, {\mathcal O} _ {X} ) $ is an irreducible separable scheme of finite type over an algebraically closed field $ k $, $ ( Y, {\mathcal O} _ {Y} ) $ is a closed subscheme of it and $ f: Y \rightarrow X $ is an imbedding. Then $ {\mathcal N} _ {Y/X} $ and $ {\mathcal N} _ {Y/X} ^ {*} $ are called the normal and conormal sheaves of the subscheme $ Y $. There is also an exact sequence of $ {\mathcal O} _ {Y} $- modules

$$ \tag{* } {\mathcal N} _ {Y/X} ^ {*} \mathop \rightarrow \limits ^ \delta \Omega _ {X} \otimes {\mathcal O} _ {Y} \rightarrow \ \Omega _ {Y} \rightarrow 0, $$

where $ \Omega _ {X} $ and $ \Omega _ {Y} $ are the sheaves of differentials on $ X $ and $ Y $. The sheaves $ {\mathcal N} _ {Y/X} ^ {*} $ and $ {\mathcal N} _ {Y/X} $ are quasi-coherent, and if $ X $ is a Noetherian scheme, then they are coherent. If $ X $ is a non-singular variety over $ k $ and $ Y $ is a non-singular variety, then $ {\mathcal N} _ {Y/X} ^ {*} $ is locally free and the homomorphism $ \delta $ in (*) is injective. In this case one obtains the dual exact sequence

$$ 0 \rightarrow {\mathcal T} _ {Y} \rightarrow {\mathcal T} _ {X} \otimes {\mathcal O} _ {Y} \rightarrow \ {\mathcal N} _ {Y/X} \rightarrow 0, $$

so that the normal sheaf $ {\mathcal N} _ {Y/X} $ is locally free of rank $ r = \mathop{\rm codim} Y $ corresponding to the normal bundle over $ Y $. In particular, if $ r = 1 $, then $ {\mathcal N} _ {Y/X} $ is the invertible sheaf corresponding to the divisor $ Y $.

In terms of normal sheaves one can express the self-intersection $ Y \cdot Y $ of a non-singular subvariety $ Y \subset X $. Namely, $ Y \cdot Y = f _ {*} c _ {r} ( {\mathcal N} _ {Y/X} ) $, where $ c _ {r} $ is the $ r $- th Chern class and $ f _ {*} : A ( Y) \rightarrow A ( X) $ is the homomorphism of Chow rings (cf. Chow ring) corresponding to the imbedding $ f: Y \rightarrow X $.

3) $ ( X, {\mathcal O} _ {X} ) $ is a complex space, $ ( Y, {\mathcal O} _ {Y} ) $ is a closed analytic subspace of it and $ f $ is the imbedding. Then $ {\mathcal N} _ {Y/X} $ and $ {\mathcal N} _ {Y/X} ^ {*} $ are called the normal and conormal sheaves of the subspace $ Y $; they are coherent. If $ X $ is an analytic manifold and $ Y $ an analytic submanifold of it, then $ {\mathcal N} _ {Y/X} $ is the sheaf of germs of holomorphic sections of the normal bundle over $ Y $.

References

[1] I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001
[2] R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001

Comments

If $ X $ is a non-singular variety over $ k $ and $ Y $ is a subscheme of $ X $ that is locally a complete intersection, then $ {\mathcal N} _ {Y/X} ^ {*} $ is locally free.

How to Cite This Entry:
Normal sheaf. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_sheaf&oldid=15442
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article