Namespaces
Variants
Actions

Difference between revisions of "Normal plane"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
''to a curve in space at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067590/n0675901.png" />''
+
{{TEX|done}}
 +
''to a curve in space at a point $M$''
  
The plane passing through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067590/n0675902.png" /> and perpendicular to the [[Tangent|tangent]] at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067590/n0675903.png" />. The normal plane contains all normals (cf. [[Normal|Normal]]) to the curve passing through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067590/n0675904.png" />. If the curve is given in rectangular coordinates by the equations
+
The plane passing through $M$ and perpendicular to the [[Tangent|tangent]] at $M$. The normal plane contains all normals (cf. [[Normal|Normal]]) to the curve passing through $M$. If the curve is given in rectangular coordinates by the equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067590/n0675905.png" /></td> </tr></table>
+
$$x=f(t),\quad y=g(t),\quad z=h(t),$$
  
then the equation of the normal plane at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067590/n0675906.png" /> corresponding to the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067590/n0675907.png" /> of the parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067590/n0675908.png" /> can be written in the form
+
then the equation of the normal plane at the point $M(x_0,y_0,z_0)$ corresponding to the value $t_0$ of the parameter $t$ can be written in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067590/n0675909.png" /></td> </tr></table>
+
$$(x-x_0)\frac{df(t_0)}{dt}+(y-y_0)\frac{dg(t_0)}{dt}+(z-z_0)\frac{dh(t_0)}{dt}=0.$$
  
If the equation of the curve has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067590/n06759010.png" />, then the equation of the normal plane is
+
If the equation of the curve has the form $\mathbf r=\mathbf r(t)$, then the equation of the normal plane is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067590/n06759011.png" /></td> </tr></table>
+
$$(\mathbf R-\mathbf r)\frac{d\mathbf r}{dt}=0.$$
  
  

Latest revision as of 17:20, 30 July 2014

to a curve in space at a point $M$

The plane passing through $M$ and perpendicular to the tangent at $M$. The normal plane contains all normals (cf. Normal) to the curve passing through $M$. If the curve is given in rectangular coordinates by the equations

$$x=f(t),\quad y=g(t),\quad z=h(t),$$

then the equation of the normal plane at the point $M(x_0,y_0,z_0)$ corresponding to the value $t_0$ of the parameter $t$ can be written in the form

$$(x-x_0)\frac{df(t_0)}{dt}+(y-y_0)\frac{dg(t_0)}{dt}+(z-z_0)\frac{dh(t_0)}{dt}=0.$$

If the equation of the curve has the form $\mathbf r=\mathbf r(t)$, then the equation of the normal plane is

$$(\mathbf R-\mathbf r)\frac{d\mathbf r}{dt}=0.$$


Comments

References

[a1] M.P. Do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976) pp. 142
How to Cite This Entry:
Normal plane. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_plane&oldid=11713
This article was adapted from an original article by BSE-3 (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article