Namespaces
Variants
Actions

Non-ideal relay

From Encyclopedia of Mathematics
Revision as of 08:03, 6 June 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
Jump to: navigation, search


The hysteresis non-linearity denoted by $ {\mathcal R} ( \alpha, \beta ) $, with thresholds $ \alpha $ and $ \beta $, and defined for a continuous input $ u ( t ) $, $ t \geq t _ {0} $, and an initial state $ r _ {0} \in \{ 0,1 \} $ by the formulas (see Fig.a1.)

$$ {\mathcal R} ( r _ {0} ; \alpha, \beta ) u ( t ) = \left \{ where $ \tau = \sup \{ s : {s \leq t, u ( s ) = \beta \textrm{ or } u ( s ) = \alpha } \} $, that is, $ \tau $ denotes the last switching moment. The input–output operators $ {\mathcal R} ( r _ {0} ; \alpha, \beta ) $ are discontinuous in the usual function spaces. These operators are monotone in a natural sense, which allows one to use the powerful methods of the theory of semi-ordered spaces in the analysis of systems with non-ideal relays. <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/n110060a.gif"/> Figure: n110060a Non-ideal relay The Preisach–Giltay model of ferromagnetic hysteresis is described as the spectral decomposition in a continual system of non-ideal relays in the following way. Let $ \mu ( \alpha, \beta ) $ be a finite [[Borel measure|Borel measure]] in the half-plane $ \Pi = \{ {( \alpha, \beta ) } : {\alpha > \beta } \} $. The input–output operators of the Preisach–Giltay hysteresis non-linearity at a given continuous input $ u ( t ) $, $ t \geq t _ {0} $, and initial state $ S ( t _ {0} ) $ is defined by the formula $$ x ( t ) = \int\limits { {\mathcal R} ( r _ {0} ( \alpha, \beta ) ; \alpha, \beta ) u ( t ) } {d \mu ( \alpha, \beta ) } , $$

where the measurable function $ r _ {0} ( \alpha, \beta ) $ describes the internal state of the non-linearity at the initial moment $ t = t _ {0} $. In contrast to the individual non-ideal relay, the operators of a Preisach–Giltay non-linearity are continuous in the space of continuous functions, provided that the measure $ \mu ( \alpha, \beta ) $ is absolutely continuous with respect to the Lebesgue measure (cf. Absolute continuity). For detailed properties of Preisach–Giltay hysteresis and further generalizations see [a1], [a2] and the references therein.

See also Hysteresis.

References

[a1] M.A. Krasnosel'skii, A.V. Pokrovskii, "Systems with hysteresis" , Springer (1989) (In Russian)
[a2] I.D. Mayergoyz, "Mathematical models of hysteresis" , Springer (1991)
How to Cite This Entry:
Non-ideal relay. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Non-ideal_relay&oldid=13966
This article was adapted from an original article by A.M. Krasnosel'skiiM.A. Krasnosel'skiiA.V. Pokrovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article