Namespaces
Variants
Actions

Difference between revisions of "Minkowski hypothesis"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(latex details)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--
 +
m0640501.png
 +
$#A+1 = 10 n = 3
 +
$#C+1 = 10 : ~/encyclopedia/old_files/data/M064/M.0604050 Minkowski hypothesis
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''on the product of inhomogeneous linear forms''
 
''on the product of inhomogeneous linear forms''
  
 
A statement according to which for real linear forms
 
A statement according to which for real linear forms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064050/m0640501.png" /></td> </tr></table>
+
$$
 +
L _ {j} ( \overline{x} )  = a _ {j1} x _ {1} + \dots + a _ {jn} x _ {n} ,\ \quad 1 \leq  j \leq  n,
 +
$$
  
in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064050/m0640502.png" /> variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064050/m0640503.png" />, with a non-zero determinant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064050/m0640504.png" />, and any real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064050/m0640505.png" />, there are integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064050/m0640506.png" /> such that the inequality
+
in $  n $
 +
variables $  x _ {1}, \ldots, x _ {n} $,
 +
with a non-zero determinant $  \Delta $,  
 +
and any reals  $  \alpha _ {1}, \ldots ,\alpha _ {n} $,  
 +
there are integers $  x _ {1}, \ldots, x _ {n} $
 +
such that the inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064050/m0640507.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
\begin{equation}\label{eq:1}
 +
\prod_{j=1}^n | L _ {j} ( \overline{x} ) - \alpha _ {j} | \leq 2^{-n} | \Delta |
 +
\end{equation}
  
holds. This hypothesis was proved by H. Minkowski (1918) in case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064050/m0640508.png" />. A proof of the hypothesis is known (1982) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064050/m0640509.png" />, and (*) has been proved for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064050/m06405010.png" /> under certain additional restrictions (see [[#References|[2]]]).
+
holds. This hypothesis was proved by H. Minkowski (1918) in case $  n = 2 $.  
 +
A proof of the hypothesis is known (1982) for $  n \leq  5 $,  
 +
and \eqref{eq:1} has been proved for $  n > 5 $
 +
under certain additional restrictions (see [[#References|[2]]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.W.S. Cassels,   "An introduction to the geometry of numbers" , Springer  (1972)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.F. Skubenko,   "A proof of Minkowski's conjecture on the product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064050/m06405011.png" /> linear inhomogeneous forms in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064050/m06405012.png" /> variables for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064050/m06405013.png" />" , ''Investigations in number theory'' , ''Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov'' , '''33'''  (1973)  pp. 6–36  (In Russian)</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  J.W.S. Cassels, "An introduction to the geometry of numbers" , Springer  (1972) {{ZBL|0209.34401}}</TD></TR>
 
+
<TR><TD valign="top">[2]</TD> <TD valign="top">  B.F. Skubenko, "A proof of Minkowski's conjecture on the product of $n$ linear inhomogeneous forms in $n$ variables for $n \leq 5$" , ''Investigations in number theory'' , ''Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov'' , '''33'''  (1973)  pp. 6–36  (In Russian)</TD></TR>
 +
</table>
  
 
====Comments====
 
====Comments====

Latest revision as of 20:27, 11 November 2023


on the product of inhomogeneous linear forms

A statement according to which for real linear forms

$$ L _ {j} ( \overline{x} ) = a _ {j1} x _ {1} + \dots + a _ {jn} x _ {n} ,\ \quad 1 \leq j \leq n, $$

in $ n $ variables $ x _ {1}, \ldots, x _ {n} $, with a non-zero determinant $ \Delta $, and any reals $ \alpha _ {1}, \ldots ,\alpha _ {n} $, there are integers $ x _ {1}, \ldots, x _ {n} $ such that the inequality

\begin{equation}\label{eq:1} \prod_{j=1}^n | L _ {j} ( \overline{x} ) - \alpha _ {j} | \leq 2^{-n} | \Delta | \end{equation}

holds. This hypothesis was proved by H. Minkowski (1918) in case $ n = 2 $. A proof of the hypothesis is known (1982) for $ n \leq 5 $, and \eqref{eq:1} has been proved for $ n > 5 $ under certain additional restrictions (see [2]).

References

[1] J.W.S. Cassels, "An introduction to the geometry of numbers" , Springer (1972) Zbl 0209.34401
[2] B.F. Skubenko, "A proof of Minkowski's conjecture on the product of $n$ linear inhomogeneous forms in $n$ variables for $n \leq 5$" , Investigations in number theory , Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov , 33 (1973) pp. 6–36 (In Russian)

Comments

See also Geometry of numbers.

References

[a1] P.M. Gruber, C.G. Lekkerkerker, "Geometry of numbers" , North-Holland (1987) pp. Sect. (iv) (Updated reprint)
[a2] P. Erdös, P.M. Gruber, J. Hammer, "Lattice points" , Longman (1989)
How to Cite This Entry:
Minkowski hypothesis. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Minkowski_hypothesis&oldid=12742
This article was adapted from an original article by E.I. Kovalevskaya (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article