Namespaces
Variants
Actions

Difference between revisions of "Minimal propositional calculus"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
 +
{{TEX|done}}
 
''minimal calculus of expressions''
 
''minimal calculus of expressions''
  
The logical calculus obtained from the [[Positive propositional calculus|positive propositional calculus]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063880/m0638801.png" /> by the addition of a new connective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063880/m0638802.png" /> (negation) and the axiom scheme
+
The logical calculus obtained from the [[Positive propositional calculus|positive propositional calculus]] $\Pi$ by the addition of a new connective $\neg$ (negation) and the axiom scheme
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063880/m0638803.png" /></td> </tr></table>
+
$$(A\supset B)\supset((A\supset\neg B)\supset\neg A),$$
  
 
which is called the law of reductio ad absurdum.
 
which is called the law of reductio ad absurdum.
  
The minimal propositional calculus is distinguished by the fact that in it not every formula is deducible from  "false" , that is, from a formula of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063880/m0638804.png" />. The minimal propositional calculus can be obtained from the calculus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063880/m0638805.png" /> in another way by adding to the language instead of the connective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063880/m0638806.png" /> a new propositional constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063880/m0638807.png" /> (falsehood) without the addition of new axiom schemes. Here the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063880/m0638808.png" /> serves as the negation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063880/m0638809.png" /> of a formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063880/m06388010.png" />.
+
The minimal propositional calculus is distinguished by the fact that in it not every formula is deducible from  "false", that is, from a formula of the form $\neg A\&A$. The minimal propositional calculus can be obtained from the calculus $\Pi$ in another way by adding to the language instead of the connective $\neg$ a new propositional constant $\bot$ (falsehood) without the addition of new axiom schemes. Here the formula $A\supset\bot$ serves as the negation $\neg A$ of a formula $A$.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Church,  "Introduction to mathematical logic" , '''1''' , Princeton Univ. Press  (1956)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Church,  "Introduction to mathematical logic" , '''1''' , Princeton Univ. Press  (1956)</TD></TR></table>

Latest revision as of 08:08, 12 August 2014

minimal calculus of expressions

The logical calculus obtained from the positive propositional calculus $\Pi$ by the addition of a new connective $\neg$ (negation) and the axiom scheme

$$(A\supset B)\supset((A\supset\neg B)\supset\neg A),$$

which is called the law of reductio ad absurdum.

The minimal propositional calculus is distinguished by the fact that in it not every formula is deducible from "false", that is, from a formula of the form $\neg A\&A$. The minimal propositional calculus can be obtained from the calculus $\Pi$ in another way by adding to the language instead of the connective $\neg$ a new propositional constant $\bot$ (falsehood) without the addition of new axiom schemes. Here the formula $A\supset\bot$ serves as the negation $\neg A$ of a formula $A$.

References

[1] A. Church, "Introduction to mathematical logic" , 1 , Princeton Univ. Press (1956)
How to Cite This Entry:
Minimal propositional calculus. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Minimal_propositional_calculus&oldid=18434
This article was adapted from an original article by S.K. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article