Namespaces
Variants
Actions

Difference between revisions of "Locally compact skew-field"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (link)
Line 11: Line 11:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031013.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031013.png" /></td> </tr></table>
  
with some constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031014.png" />. If this inequality holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031015.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031016.png" /> is said to be non-Archimedean, or ultrametric. Otherwise <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031017.png" /> is called an Archimedean skew-field. A skew-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031018.png" /> is Archimedean if and only if it is connected. Any Archimedean skew-field is isomorphic to either the field of real numbers, the field of complex numbers or the skew-field of quaternions.
+
with some constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031014.png" />. If this inequality holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031015.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031016.png" /> is said to be non-Archimedean, or [[ultrametric]]. Otherwise <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031017.png" /> is called an Archimedean skew-field. A skew-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031018.png" /> is Archimedean if and only if it is connected. Any Archimedean skew-field is isomorphic to either the field of real numbers, the field of complex numbers or the skew-field of quaternions.
  
 
An ultrametric skew-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031019.png" /> is totally disconnected (cf. [[Totally-disconnected space|Totally-disconnected space]]). The  "modulus"  function determines a non-Archimedean metric on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031020.png" />. Any such skew-field is an extension of finite degree of either the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031021.png" /> of rational <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031022.png" />-adic numbers for some prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031023.png" /> (in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031024.png" /> has characteristic 0) or the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031025.png" /> of [[Formal power series|formal power series]] over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031026.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031027.png" /> elements (in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031028.png" /> has characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031029.png" />). The field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031030.png" /> (respectively, the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031031.png" />) lies in the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031032.png" />. In each of these cases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031033.png" /> is called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031035.png" />-skew-field, or a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031037.png" />-field.
 
An ultrametric skew-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031019.png" /> is totally disconnected (cf. [[Totally-disconnected space|Totally-disconnected space]]). The  "modulus"  function determines a non-Archimedean metric on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031020.png" />. Any such skew-field is an extension of finite degree of either the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031021.png" /> of rational <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031022.png" />-adic numbers for some prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031023.png" /> (in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031024.png" /> has characteristic 0) or the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031025.png" /> of [[Formal power series|formal power series]] over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031026.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031027.png" /> elements (in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031028.png" /> has characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031029.png" />). The field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031030.png" /> (respectively, the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031031.png" />) lies in the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031032.png" />. In each of these cases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031033.png" /> is called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031035.png" />-skew-field, or a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031037.png" />-field.

Revision as of 20:36, 9 April 2017

A set endowed with both the algebraic structure of a skew-field and a locally compact topology (cf. Locally compact space). It is required that the algebraic operations, that is, addition, multiplication and transitions to negative and inverse elements (the latter is defined only on the set of non-zero elements ) are continuous in the given topology. Since any skew-field is locally compact with respect to the discrete topology, it is assumed that the topology of is not discrete.

The study of locally compact skew-fields is based on the existence of a Haar measure on the locally compact group (the additive group of the skew-field). Let be a Haar measure on and let be a compact set in of positive measure. Then the formula

defines a homomorphism (the modulus) of the multiplicative group into the multiplicative group of positive real numbers. By definition one puts .

The "modulus" function satisfies the inequality

with some constant . If this inequality holds for , then is said to be non-Archimedean, or ultrametric. Otherwise is called an Archimedean skew-field. A skew-field is Archimedean if and only if it is connected. Any Archimedean skew-field is isomorphic to either the field of real numbers, the field of complex numbers or the skew-field of quaternions.

An ultrametric skew-field is totally disconnected (cf. Totally-disconnected space). The "modulus" function determines a non-Archimedean metric on . Any such skew-field is an extension of finite degree of either the field of rational -adic numbers for some prime number (in the case when has characteristic 0) or the field of formal power series over the field of elements (in the case when has characteristic ). The field (respectively, the field ) lies in the centre of . In each of these cases is called a -skew-field, or a -field.

An ultrametric skew-field contains a unique maximal subring , defined by the condition

This ring is local (cf. Local ring). Its maximal ideal is defined by the condition

and all elements with modulus 1 are invertible in . is a principal ideal, and the residue field is a finite field of characteristic .

In the case when the -skew-field is not commutative, it has dimension over its centre and ramification index over . Also, there is an intermediate field such that , where is an unramified extension of of degree , and all automorphisms of over are induced by inner automorphisms of .

References

[1] N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)
[2] A. Weil, "Basic number theory" , Springer (1974)
[3] B.L. van der Waerden, "Algebra" , 1–2 , Springer (1967–1971) (Translated from German)
[4] J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1986)
[5] L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian)
How to Cite This Entry:
Locally compact skew-field. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Locally_compact_skew-field&oldid=14359
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article