Namespaces
Variants
Actions

Difference between revisions of "Kronecker theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k0559101.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k0559102.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k0559103.png" />; then for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k0559104.png" /> there exist integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k0559105.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k0559106.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k0559107.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k0559108.png" />, such that
+
<!--
 +
k0559101.png
 +
$#A+1 = 40 n = 0
 +
$#C+1 = 40 : ~/encyclopedia/old_files/data/K055/K.0505910 Kronecker theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k0559109.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
if and only if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591010.png" /> such that
+
Given  $  a _ {i} = ( a _ {i1} \dots a _ {in} ) \in \mathbf R  ^ {n} $,
 +
$  i = 1 \dots m $,
 +
and $  b = ( b _ {1} \dots b _ {n} ) \in \mathbf R  ^ {n} $;
 +
then for any $  \epsilon > 0 $
 +
there exist integers  $  q _ {i} $,
 +
$  i = 1 \dots m $,
 +
and  $  p _ {j} $,
 +
$  j = 1 \dots n $,
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591011.png" /></td> </tr></table>
+
$$
 +
\left |
 +
\sum _ {i = 1 } ^ { m }
 +
q _ {i} a _ {ij} - p _ {j} - b _ {j} \
 +
\right |  < \epsilon ,\ \
 +
1 \leq  j \leq  n,
 +
$$
 +
 
 +
if and only if for any  $  r _ {1} \dots r _ {n} \in \mathbf Z $
 +
such that
 +
 
 +
$$
 +
\sum _ {j = 1 } ^ { n }
 +
a _ {ij} r _ {j}  \in  \mathbf Z ,\ \
 +
i = 1 \dots m,
 +
$$
  
 
the number
 
the number
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591012.png" /></td> </tr></table>
+
$$
 +
\sum _ {j = 1 } ^ { n }  b _ {j }  r _ {j }
 +
$$
  
 
is also an integer. This theorem was first proved in 1884 by L. Kronecker (see [[#References|[1]]]).
 
is also an integer. This theorem was first proved in 1884 by L. Kronecker (see [[#References|[1]]]).
  
Kronecker's theorem is a special case of the following theorem [[#References|[2]]], which describes the closure of the subgroup of the torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591013.png" /> generated by the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591015.png" />: The closure is precisely the set of all classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591016.png" /> such that, for any numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591017.png" /> with
+
Kronecker's theorem is a special case of the following theorem [[#References|[2]]], which describes the closure of the subgroup of the torus $  T  ^ {n} = \mathbf R  ^ {n} / \mathbf Z  ^ {n} $
 +
generated by the elements $  a _ {i} + \mathbf Z  ^ {n} $,  
 +
$  i = 1 \dots m $:  
 +
The closure is precisely the set of all classes $  b + \mathbf Z  ^ {n} $
 +
such that, for any numbers $  r _ {1} \dots r _ {n} \in \mathbf Z $
 +
with
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591018.png" /></td> </tr></table>
+
$$
 +
\sum _ {j = 1 } ^ { n }
 +
a _ {ij} r _ {j}  \in  \mathbf Z ,\ \
 +
i = 1 \dots n,
 +
$$
  
 
one has also
 
one has also
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591019.png" /></td> </tr></table>
+
$$
 +
\sum _ {j = 1 } ^ { n }
 +
b _ {j} r _ {j}  \in  \mathbf Z .
 +
$$
  
(Cf. [[#References|[2]]].) Under the assumptions of Kronecker's theorem, this closure is simply <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591020.png" />. This means that the subgroup of all elements of the form
+
(Cf. [[#References|[2]]].) Under the assumptions of Kronecker's theorem, this closure is simply $  T  ^ {n} $.  
 +
This means that the subgroup of all elements of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591021.png" /></td> </tr></table>
+
$$
 +
\sum _ {i = 1 } ^ { m }
 +
q _ {i} ( a _ {i} + \mathbf Z )  ^ {n} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591022.png" />, is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591023.png" />, while the subgroup of vectors
+
where $  q _ {i} \in \mathbf Z $,  
 +
is dense in $  T  ^ {n} $,  
 +
while the subgroup of vectors
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591024.png" /></td> </tr></table>
+
$$
 +
\sum _ {i = 1 } ^ { m }
 +
q _ {i} a _ {i} + p,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591025.png" />, is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591026.png" />. Kronecker's theorem can be derived from the [[Duality|duality]] theory for commutative topological groups (cf. [[Topological group|Topological group]]), [[#References|[3]]].
+
where $  p \in \mathbf Z  ^ {n} $,  
 +
is dense in $  \mathbf R  ^ {n} $.  
 +
Kronecker's theorem can be derived from the [[Duality|duality]] theory for commutative topological groups (cf. [[Topological group|Topological group]]), [[#References|[3]]].
  
In the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591027.png" />, Kronecker's theorem becomes the following proposition: A class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591028.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591029.png" />, generates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591030.png" /> as a topological group if and only if the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591031.png" /> are linearly independent over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591032.png" /> of rational numbers. In particular, the torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591033.png" /> as a topological group is monothetic, i.e. is generated by a single element.
+
In the case $  m = 1 $,  
 +
Kronecker's theorem becomes the following proposition: A class $  \omega + \mathbf Z  ^ {n} $,  
 +
where $  \omega = ( \omega _ {1} \dots \omega _ {n} ) \in \mathbf R  ^ {n} $,  
 +
generates $  T  ^ {n} $
 +
as a topological group if and only if the numbers $  1, \omega _ {1} \dots \omega _ {n} $
 +
are linearly independent over the field $  \mathbf Q $
 +
of rational numbers. In particular, the torus $  T  ^ {n} $
 +
as a topological group is monothetic, i.e. is generated by a single element.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Kronecker,  "Näherungsweise ganzzahlige Auflösung linearer Gleichungen" , ''Werke'' , '''3''' , Chelsea, reprint  (1968)  pp. 47–109</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. General topology" , Addison-Wesley  (1966)  (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.S. Pontryagin,  "Topological groups" , Princeton Univ. Press  (1958)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Kronecker,  "Näherungsweise ganzzahlige Auflösung linearer Gleichungen" , ''Werke'' , '''3''' , Chelsea, reprint  (1968)  pp. 47–109</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. General topology" , Addison-Wesley  (1966)  (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.S. Pontryagin,  "Topological groups" , Princeton Univ. Press  (1958)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The last statement above can be rephrased as: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591034.png" /> are linearly independent over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591035.png" />, then the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591036.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591037.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591038.png" /> denotes the fractional part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591039.png" /> (cf. [[Fractional part of a number|Fractional part of a number]]). In fact, the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591040.png" /> is even uniformly distributed, cf. [[Uniform distribution|Uniform distribution]].
+
The last statement above can be rephrased as: If $  \omega _ {1} \dots \omega _ {n} $
 +
are linearly independent over $  \mathbf Q $,  
 +
then the set $  B= \{ ( \{ k \omega _ {1} \} \dots \{ k \omega _ {n} \} ) : k \in \mathbf Z \} $
 +
is dense in $  ( 0, 1) $.  
 +
Here $  \{ x \} = x - [ x] $
 +
denotes the fractional part of $  x $(
 +
cf. [[Fractional part of a number|Fractional part of a number]]). In fact, the set $  B $
 +
is even uniformly distributed, cf. [[Uniform distribution|Uniform distribution]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.H. Hardy,  E.M. Wright,  "An introduction to the theory of numbers" , Oxford Univ. Press  (1979)  pp. Chapt. 23</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.W.S. Cassels,  "An introduction to diophantine approximation" , Cambridge Univ. Press  (1957)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.H. Hardy,  E.M. Wright,  "An introduction to the theory of numbers" , Oxford Univ. Press  (1979)  pp. Chapt. 23</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.W.S. Cassels,  "An introduction to diophantine approximation" , Cambridge Univ. Press  (1957)</TD></TR></table>

Latest revision as of 22:15, 5 June 2020


Given $ a _ {i} = ( a _ {i1} \dots a _ {in} ) \in \mathbf R ^ {n} $, $ i = 1 \dots m $, and $ b = ( b _ {1} \dots b _ {n} ) \in \mathbf R ^ {n} $; then for any $ \epsilon > 0 $ there exist integers $ q _ {i} $, $ i = 1 \dots m $, and $ p _ {j} $, $ j = 1 \dots n $, such that

$$ \left | \sum _ {i = 1 } ^ { m } q _ {i} a _ {ij} - p _ {j} - b _ {j} \ \right | < \epsilon ,\ \ 1 \leq j \leq n, $$

if and only if for any $ r _ {1} \dots r _ {n} \in \mathbf Z $ such that

$$ \sum _ {j = 1 } ^ { n } a _ {ij} r _ {j} \in \mathbf Z ,\ \ i = 1 \dots m, $$

the number

$$ \sum _ {j = 1 } ^ { n } b _ {j } r _ {j } $$

is also an integer. This theorem was first proved in 1884 by L. Kronecker (see [1]).

Kronecker's theorem is a special case of the following theorem [2], which describes the closure of the subgroup of the torus $ T ^ {n} = \mathbf R ^ {n} / \mathbf Z ^ {n} $ generated by the elements $ a _ {i} + \mathbf Z ^ {n} $, $ i = 1 \dots m $: The closure is precisely the set of all classes $ b + \mathbf Z ^ {n} $ such that, for any numbers $ r _ {1} \dots r _ {n} \in \mathbf Z $ with

$$ \sum _ {j = 1 } ^ { n } a _ {ij} r _ {j} \in \mathbf Z ,\ \ i = 1 \dots n, $$

one has also

$$ \sum _ {j = 1 } ^ { n } b _ {j} r _ {j} \in \mathbf Z . $$

(Cf. [2].) Under the assumptions of Kronecker's theorem, this closure is simply $ T ^ {n} $. This means that the subgroup of all elements of the form

$$ \sum _ {i = 1 } ^ { m } q _ {i} ( a _ {i} + \mathbf Z ) ^ {n} , $$

where $ q _ {i} \in \mathbf Z $, is dense in $ T ^ {n} $, while the subgroup of vectors

$$ \sum _ {i = 1 } ^ { m } q _ {i} a _ {i} + p, $$

where $ p \in \mathbf Z ^ {n} $, is dense in $ \mathbf R ^ {n} $. Kronecker's theorem can be derived from the duality theory for commutative topological groups (cf. Topological group), [3].

In the case $ m = 1 $, Kronecker's theorem becomes the following proposition: A class $ \omega + \mathbf Z ^ {n} $, where $ \omega = ( \omega _ {1} \dots \omega _ {n} ) \in \mathbf R ^ {n} $, generates $ T ^ {n} $ as a topological group if and only if the numbers $ 1, \omega _ {1} \dots \omega _ {n} $ are linearly independent over the field $ \mathbf Q $ of rational numbers. In particular, the torus $ T ^ {n} $ as a topological group is monothetic, i.e. is generated by a single element.

References

[1] L. Kronecker, "Näherungsweise ganzzahlige Auflösung linearer Gleichungen" , Werke , 3 , Chelsea, reprint (1968) pp. 47–109
[2] N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) (Translated from French)
[3] L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian)

Comments

The last statement above can be rephrased as: If $ \omega _ {1} \dots \omega _ {n} $ are linearly independent over $ \mathbf Q $, then the set $ B= \{ ( \{ k \omega _ {1} \} \dots \{ k \omega _ {n} \} ) : k \in \mathbf Z \} $ is dense in $ ( 0, 1) $. Here $ \{ x \} = x - [ x] $ denotes the fractional part of $ x $( cf. Fractional part of a number). In fact, the set $ B $ is even uniformly distributed, cf. Uniform distribution.

References

[a1] G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapt. 23
[a2] J.W.S. Cassels, "An introduction to diophantine approximation" , Cambridge Univ. Press (1957)
How to Cite This Entry:
Kronecker theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kronecker_theorem&oldid=19181
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article