Namespaces
Variants
Actions

Difference between revisions of "Kernel pair"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''of a morphism in a category''
+
<!--
 +
k0553301.png
 +
$#A+1 = 35 n = 0
 +
$#C+1 = 35 : ~/encyclopedia/old_files/data/K055/K.0505330 Kernel pair
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A categorical generalization of the equivalence relation induced by a mapping of one set into another. A pair of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553301.png" /> in a [[Category|category]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553302.png" /> is called a kernel pair of the morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553303.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553304.png" />, and if for any pair of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553305.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553306.png" /> there is a unique morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553307.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553308.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553309.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533010.png" /> be an arbitrary category of universal algebras of a given type and all homomorphisms between them that is closed with respect to finite products, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533011.png" /> be a kernel pair of a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533012.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533013.png" />. Then the image of the homomorphism
+
''of a morphism in a category''
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533014.png" /></td> </tr></table>
+
A categorical generalization of the equivalence relation induced by a mapping of one set into another. A pair of morphisms  $  \epsilon _ {1} , \epsilon _ {2} :  R \rightarrow A $
 +
in a [[Category|category]]  $  \mathfrak K $
 +
is called a kernel pair of the morphism  $  \alpha :  A \rightarrow B $
 +
if  $  \epsilon _ {1} \alpha = \epsilon _ {2} \alpha $,
 +
and if for any pair of morphisms  $  \phi , \psi : X \rightarrow A $
 +
for which  $  \phi \alpha = \psi \alpha $
 +
there is a unique morphism  $  \gamma : X \rightarrow R $
 +
such that  $  \phi = \gamma \epsilon _ {1} $
 +
and  $  \psi = \gamma \epsilon _ {2} $.
  
induced by the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533015.png" /> is a congruence on the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533016.png" /> (cf. also [[Congruence (in algebra)|Congruence (in algebra)]]). Conversely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533017.png" /> is an arbitrary congruence on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533019.png" /> is the imbedding of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533020.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533021.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533022.png" /> are the projections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533023.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533024.png" />, then the pair of homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533025.png" /> is a kernel pair of the natural homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533026.png" /> onto the quotient algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533027.png" />.
+
Let  $  \mathfrak Y $
 +
be an arbitrary category of universal algebras of a given type and all homomorphisms between them that is closed with respect to finite products, and let  $  \epsilon _ {1} , \epsilon _ {2} : R \rightarrow A $
 +
be a kernel pair of a homomorphism $  f: A \rightarrow B $
 +
in  $  \mathfrak Y $.  
 +
Then the image of the homomorphism
  
In an arbitrary category with finite products and kernels of pairs of morphisms (cf. [[Kernel of a morphism in a category|Kernel of a morphism in a category]]), the kernel pair of a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533028.png" /> is constructed as follows. One chooses a product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533029.png" /> with the projections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533031.png" />, and determines the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533032.png" /> of the pair of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533033.png" />. Then the pair of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533034.png" /> is a kernel pair of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533035.png" />.
+
$$
 +
\epsilon _ {1} \times \epsilon _ {2} : R  \rightarrow  A \times A
 +
$$
  
 +
induced by the pair  $  \epsilon _ {1} , \epsilon _ {2} $
 +
is a congruence on the algebra  $  A $(
 +
cf. also [[Congruence (in algebra)|Congruence (in algebra)]]). Conversely, if  $  R \subset  A \times A $
 +
is an arbitrary congruence on  $  A $,
 +
$  i $
 +
is the imbedding of  $  R $
 +
into  $  A \times A $,
 +
and  $  p _ {1} , p _ {2} $
 +
are the projections of  $  A \times A $
 +
onto  $  A $,
 +
then the pair of homomorphisms  $  ip _ {1} , ip _ {2} :  R \rightarrow A $
 +
is a kernel pair of the natural homomorphism of  $  A $
 +
onto the quotient algebra  $  A/R $.
  
 +
In an arbitrary category with finite products and kernels of pairs of morphisms (cf. [[Kernel of a morphism in a category|Kernel of a morphism in a category]]), the kernel pair of a morphism  $  \alpha :  A \rightarrow B $
 +
is constructed as follows. One chooses a product  $  A \times A $
 +
with the projections  $  \pi _ {1} $
 +
and  $  \pi _ {2} $,
 +
and determines the kernel  $  \mu $
 +
of the pair of morphisms  $  \pi _ {1} \alpha , \pi _ {2} \alpha :  A \times A \rightarrow B $.
 +
Then the pair of morphisms  $  \mu \pi _ {1} , \mu \pi _ {2} $
 +
is a kernel pair of  $  \alpha $.
  
 
====Comments====
 
====Comments====

Latest revision as of 22:14, 5 June 2020


of a morphism in a category

A categorical generalization of the equivalence relation induced by a mapping of one set into another. A pair of morphisms $ \epsilon _ {1} , \epsilon _ {2} : R \rightarrow A $ in a category $ \mathfrak K $ is called a kernel pair of the morphism $ \alpha : A \rightarrow B $ if $ \epsilon _ {1} \alpha = \epsilon _ {2} \alpha $, and if for any pair of morphisms $ \phi , \psi : X \rightarrow A $ for which $ \phi \alpha = \psi \alpha $ there is a unique morphism $ \gamma : X \rightarrow R $ such that $ \phi = \gamma \epsilon _ {1} $ and $ \psi = \gamma \epsilon _ {2} $.

Let $ \mathfrak Y $ be an arbitrary category of universal algebras of a given type and all homomorphisms between them that is closed with respect to finite products, and let $ \epsilon _ {1} , \epsilon _ {2} : R \rightarrow A $ be a kernel pair of a homomorphism $ f: A \rightarrow B $ in $ \mathfrak Y $. Then the image of the homomorphism

$$ \epsilon _ {1} \times \epsilon _ {2} : R \rightarrow A \times A $$

induced by the pair $ \epsilon _ {1} , \epsilon _ {2} $ is a congruence on the algebra $ A $( cf. also Congruence (in algebra)). Conversely, if $ R \subset A \times A $ is an arbitrary congruence on $ A $, $ i $ is the imbedding of $ R $ into $ A \times A $, and $ p _ {1} , p _ {2} $ are the projections of $ A \times A $ onto $ A $, then the pair of homomorphisms $ ip _ {1} , ip _ {2} : R \rightarrow A $ is a kernel pair of the natural homomorphism of $ A $ onto the quotient algebra $ A/R $.

In an arbitrary category with finite products and kernels of pairs of morphisms (cf. Kernel of a morphism in a category), the kernel pair of a morphism $ \alpha : A \rightarrow B $ is constructed as follows. One chooses a product $ A \times A $ with the projections $ \pi _ {1} $ and $ \pi _ {2} $, and determines the kernel $ \mu $ of the pair of morphisms $ \pi _ {1} \alpha , \pi _ {2} \alpha : A \times A \rightarrow B $. Then the pair of morphisms $ \mu \pi _ {1} , \mu \pi _ {2} $ is a kernel pair of $ \alpha $.

Comments

A cokernel pair is defined dually.

References

[a1] F.G. Manes, "Algebraic categories" , Springer (1976) pp. Chapt. 2, §1
[a2] H. Schubert, "Kategorien" , 2 , Springer (1970) pp. Sect. 18.4
[a3] S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Sects. 3.3, 3.4
How to Cite This Entry:
Kernel pair. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kernel_pair&oldid=17146
This article was adapted from an original article by M.Sh. Tsalenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article