Namespaces
Variants
Actions

Difference between revisions of "Kantorovich process"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An iterative method for improving the approximation to the value of a root of a non-linear functional (operator) equation (a generalization of Newton's method cf. [[Newton method|Newton method]]). For the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k0551001.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k0551002.png" /> is a non-linear operator from one Banach space to another, the formula for calculating the root has the form
+
<!--
 +
k0551001.png
 +
$#A+1 = 28 n = 0
 +
$#C+1 = 28 : ~/encyclopedia/old_files/data/K055/K.0505100 Kantorovich process
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k0551003.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
(Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k0551004.png" /> is the [[Fréchet derivative|Fréchet derivative]].) Sometimes a modified process, given by the following formula, is used:
+
An iterative method for improving the approximation to the value of a root of a non-linear functional (operator) equation (a generalization of Newton's method cf. [[Newton method|Newton method]]). For the equation  $  P ( x) = 0 $,
 +
where  $  P $
 +
is a non-linear operator from one Banach space to another, the formula for calculating the root has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k0551005.png" /></td> </tr></table>
+
$$
 +
x _ {n+} 1  = x _ {n} -
 +
[ P ^ { \prime } ( x _ {n} ) ]  ^ {-} 1 P ( x _ {n} ) .
 +
$$
  
Suppose that the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k0551006.png" /> is twice continuously differentiable and that the following conditions hold (see [[#References|[2]]]):
+
(Here  $  P ^ { \prime } $
 +
is the [[Fréchet derivative|Fréchet derivative]].) Sometimes a modified process, given by the following formula, is used:
  
1) the linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k0551007.png" /> exists;
+
$$
 +
\widetilde{x}  _ {n+} 1 = \
 +
\widetilde{x}  _ {n} -
 +
[ P ^ { \prime } ( x _ {0} ) ]  ^ {-} 1 P ( \widetilde{x}  _ {n} ) .
 +
$$
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k0551008.png" />;
+
Suppose that the operator  $  P $
 +
is twice continuously differentiable and that the following conditions hold (see [[#References|[2]]]):
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k0551009.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510010.png" />;
+
1) the linear operator  $  \Gamma _ {0} = [ P ^ { \prime } ( x _ {0} ) ]  ^ {-} 1 $
 +
exists;
  
4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510011.png" />;
+
2) $  \| \Gamma _ {0} P ( x _ {0} ) \| \leq  \eta $;
  
5) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510012.png" />.
+
3) $  \| \Gamma _ {0} P ^ { \prime\prime } ( x) \| \leq  K $
 +
when  $  \| x - x _ {0} \| \leq  r $;
  
Then the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510013.png" /> has a solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510014.png" /> such that
+
4)  $  h = K \eta \leq  1 / 2 $;
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510015.png" /></td> </tr></table>
+
5)  $  r \geq  r _ {0} = ( 1 - \sqrt 1- 2h ) \eta / h $.
  
The sequences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510017.png" /> converge to this solution, with
+
Then the equation  $  P ( x) = 0 $
 +
has a solution $  x  ^ {*} $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510018.png" /></td> </tr></table>
+
$$
 +
\| x  ^ {*} - x _ {0} \|  \leq  r _ {0} .
 +
$$
  
and in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510019.png" />,
+
The sequences  $  x _ {n} $
 +
and $  \widetilde{x}  _ {n} $
 +
converge to this solution, with
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510020.png" /></td> </tr></table>
+
$$
 +
\| x  ^ {*} - x _ {n} \|
 +
\leq 
 +
\frac{( 2 h ) ^ {2  ^ {n} } \eta }{2  ^ {n} h }
 +
,
 +
$$
  
The Kantorovich process always converges to a root <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510021.png" /> of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510022.png" />, provided that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510023.png" /> is sufficiently smooth, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510024.png" /> exists and the initial approximation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510025.png" /> is chosen sufficiently close to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510026.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510027.png" /> exists and is continuous, then the convergence of the basic process is quadratic. The rate of convergence of the modified process is that of a decreasing geometric progression; the denominator of this progression tends to zero as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510028.png" />.
+
and in the case  $  h < 1 / 2 $,
 +
 
 +
$$
 +
\| x  ^ {*} - \widetilde{x}  _ {n} \|
 +
\leq 
 +
\frac{( 1 - \sqrt 1- 2h )  ^ {n+} 1 \eta }{h}
 +
.
 +
$$
 +
 
 +
The Kantorovich process always converges to a root $  x  ^ {*} $
 +
of the equation $  P ( x) = 0 $,  
 +
provided that $  P $
 +
is sufficiently smooth, $  [ P ^ { \prime } ( x  ^ {*} ) ]  ^ {-} 1 $
 +
exists and the initial approximation $  x _ {0} $
 +
is chosen sufficiently close to $  x  ^ {*} $.  
 +
If $  P ^ { \prime\prime } ( x) $
 +
exists and is continuous, then the convergence of the basic process is quadratic. The rate of convergence of the modified process is that of a decreasing geometric progression; the denominator of this progression tends to zero as $  x _ {0} \rightarrow x  ^ {*} $.
  
 
The process was proposed by L.V. Kantorovich [[#References|[1]]].
 
The process was proposed by L.V. Kantorovich [[#References|[1]]].
Line 37: Line 85:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.V. Kantorovich,  "On Newton's method for functional equations"  ''Dokl. Akad. Nauk SSSR'' , '''59''' :  6  (1948)  pp. 1237–1240  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.V. Kantorovich,  G.P. Akilov,  "Functional analysis in normed spaces" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.A. Krasnosel'skii,  G.M. Vainikko,  P.P. Zabreiko,  et al.,  "Approximate solution of operator equations" , Wolters-Noordhoff  (1972)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L. Collatz,  "Funktionalanalysis und numerische Mathematik" , Springer  (1964)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.V. Kantorovich,  "On Newton's method for functional equations"  ''Dokl. Akad. Nauk SSSR'' , '''59''' :  6  (1948)  pp. 1237–1240  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.V. Kantorovich,  G.P. Akilov,  "Functional analysis in normed spaces" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.A. Krasnosel'skii,  G.M. Vainikko,  P.P. Zabreiko,  et al.,  "Approximate solution of operator equations" , Wolters-Noordhoff  (1972)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L. Collatz,  "Funktionalanalysis und numerische Mathematik" , Springer  (1964)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 22:14, 5 June 2020


An iterative method for improving the approximation to the value of a root of a non-linear functional (operator) equation (a generalization of Newton's method cf. Newton method). For the equation $ P ( x) = 0 $, where $ P $ is a non-linear operator from one Banach space to another, the formula for calculating the root has the form

$$ x _ {n+} 1 = x _ {n} - [ P ^ { \prime } ( x _ {n} ) ] ^ {-} 1 P ( x _ {n} ) . $$

(Here $ P ^ { \prime } $ is the Fréchet derivative.) Sometimes a modified process, given by the following formula, is used:

$$ \widetilde{x} _ {n+} 1 = \ \widetilde{x} _ {n} - [ P ^ { \prime } ( x _ {0} ) ] ^ {-} 1 P ( \widetilde{x} _ {n} ) . $$

Suppose that the operator $ P $ is twice continuously differentiable and that the following conditions hold (see [2]):

1) the linear operator $ \Gamma _ {0} = [ P ^ { \prime } ( x _ {0} ) ] ^ {-} 1 $ exists;

2) $ \| \Gamma _ {0} P ( x _ {0} ) \| \leq \eta $;

3) $ \| \Gamma _ {0} P ^ { \prime\prime } ( x) \| \leq K $ when $ \| x - x _ {0} \| \leq r $;

4) $ h = K \eta \leq 1 / 2 $;

5) $ r \geq r _ {0} = ( 1 - \sqrt 1- 2h ) \eta / h $.

Then the equation $ P ( x) = 0 $ has a solution $ x ^ {*} $ such that

$$ \| x ^ {*} - x _ {0} \| \leq r _ {0} . $$

The sequences $ x _ {n} $ and $ \widetilde{x} _ {n} $ converge to this solution, with

$$ \| x ^ {*} - x _ {n} \| \leq \frac{( 2 h ) ^ {2 ^ {n} } \eta }{2 ^ {n} h } , $$

and in the case $ h < 1 / 2 $,

$$ \| x ^ {*} - \widetilde{x} _ {n} \| \leq \frac{( 1 - \sqrt 1- 2h ) ^ {n+} 1 \eta }{h} . $$

The Kantorovich process always converges to a root $ x ^ {*} $ of the equation $ P ( x) = 0 $, provided that $ P $ is sufficiently smooth, $ [ P ^ { \prime } ( x ^ {*} ) ] ^ {-} 1 $ exists and the initial approximation $ x _ {0} $ is chosen sufficiently close to $ x ^ {*} $. If $ P ^ { \prime\prime } ( x) $ exists and is continuous, then the convergence of the basic process is quadratic. The rate of convergence of the modified process is that of a decreasing geometric progression; the denominator of this progression tends to zero as $ x _ {0} \rightarrow x ^ {*} $.

The process was proposed by L.V. Kantorovich [1].

References

[1] L.V. Kantorovich, "On Newton's method for functional equations" Dokl. Akad. Nauk SSSR , 59 : 6 (1948) pp. 1237–1240 (In Russian)
[2] L.V. Kantorovich, G.P. Akilov, "Functional analysis in normed spaces" , Pergamon (1964) (Translated from Russian)
[3] M.A. Krasnosel'skii, G.M. Vainikko, P.P. Zabreiko, et al., "Approximate solution of operator equations" , Wolters-Noordhoff (1972) (Translated from Russian)
[4] L. Collatz, "Funktionalanalysis und numerische Mathematik" , Springer (1964)

Comments

The modified process is also called the Newton–Raphson method.

References

[a1] J.E. Denis jr., R. Schnable, "Numerical methods for unconstrained optimization and nonlinear equations" , Prentice-Hall (1983)
[a2] J.M. Ortega, W.C. Rheinboldt, "Iterative solution of non-linear equations in several variables" , Acad. Press (1970)
How to Cite This Entry:
Kantorovich process. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kantorovich_process&oldid=14866
This article was adapted from an original article by I.K. Daugavet (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article