Namespaces
Variants
Actions

Difference between revisions of "Jordan triple system"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (Typo: It said "Lie triple system" when it should say "Jordan triple system")
 
(6 intermediate revisions by one other user not shown)
Line 1: Line 1:
A triple system closely related to Jordan algebras.
+
A [[triple system]] closely related to [[Jordan algebra]]s.
  
A triple system is a [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300601.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300602.png" /> together with a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300603.png" />-trilinear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300604.png" />, called a triple product and usually denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300605.png" /> (sometimes dropping the commas).
+
A triple system is a [[vector space]] $V$ over a field $K$ together with a $K$-[[trilinear mapping]] $V \times V \times V \rightarrow V$, called a ''triple product'' and usually denoted by $\{ \cdot , \cdot , \cdot \}$ (sometimes dropping the commas).
  
 
It is said to be a Jordan triple system if
 
It is said to be a Jordan triple system if
 +
$$
 +
\{ u,v,w \} = \{ w,v,u \} \ ,
 +
$$
 +
$$
 +
\{x,y,\{u,v,w\}\} = \{\{x,y,u\},v,w\} - \{u,\{y,x,v\},w\} + \{u,v,\{x,y,w\}\}
 +
$$
 +
with $x,y,u,v,w \in V$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300606.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
From the algebraic viewpoint, a Jordan triple system $(V,\{,,\})$ is a [[Lie triple system]] with respect to the new triple product
 +
$$
 +
[x,y,z] = \{x,y,z\} - \{y,x,z\} \ .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300607.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
This implies that all simple Lie algebras over an [[algebraically closed field]] of characteristic zero, except $G_2$, $F_4$ and $E_8$ (cf. also [[Lie algebra]]), can be constructed using the standard embedding Lie algebra associated with a Lie triple system via a Jordan triple system.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300608.png" /></td> </tr></table>
+
From the geometrical viewpoint there is, for example, a correspondence between symmetric $R$-spaces and compact Jordan triple systems [[#References|[a3]]] as well as a correspondence between bounded symmetric domains and Hermitian Jordan triple systems [[#References|[a2]]].
 
 
with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300609.png" />.
 
 
 
From the algebraic viewpoint, a Jordan triple system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006010.png" /> is a [[Lie triple system|Lie triple system]] with respect to the new triple product
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006011.png" /></td> </tr></table>
 
 
 
This implies that all simple Lie algebras over an [[Algebraically closed field|algebraically closed field]] of characteristic zero, except <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006014.png" /> (cf. also [[Lie algebra|Lie algebra]]), can be constructed using the standard embedding Lie algebra associated with a Lie triple system via a Lie triple system.
 
 
 
From the geometrical viewpoint there is, for example, a correspondence between symmetric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006015.png" />-spaces and compact Jordan triple systems [[#References|[a3]]] as well as a correspondence between bounded symmetric domains and Hermitian Jordan triple systems [[#References|[a2]]].
 
  
 
For superversions of this triple system, see [[#References|[a5]]].
 
For superversions of this triple system, see [[#References|[a5]]].
  
 
==Examples.==
 
==Examples.==
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006016.png" /> be an associative algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006017.png" /> (cf. also [[Associative rings and algebras|Associative rings and algebras]]) and set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006018.png" />, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006019.png" />-matrices over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006020.png" />. This vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006021.png" /> is a Jordan triple system with respect to the product
+
Let $D$ be an associative algebra over $K$ (cf. also [[Associative rings and algebras]]) and set $V = M_{p,q}(D)$, the $(p\times q)$-matrices over $D$. This vector space $V$ is a Jordan triple system with respect to the product
 +
$$
 +
\{x,y,z\} = x y^\top z + z y^\top x
 +
$$
 +
where $y^\top$ denotes the [[transpose matrix]] of $y$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006022.png" /></td> </tr></table>
+
Let $V$ be a vector space over $K$ equipped with a symmetric bilinear form $(\cdot,\cdot)$. Then $V$ is a Jordan triple system with respect to the product
 +
$$
 +
\{x,y,z\} = (x,y) z + (y,z) x - y (z,x) \ .
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006023.png" /> denotes the transpose matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006024.png" />.
+
Let $J$ be a commutative [[Jordan algebra]]. Then $J$ is a Jordan triple system with respect to the product
 +
$$
 +
\{x,y,z\} = x(yz) + (xy)z - y(xz) \ .
 +
$$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006025.png" /> be a vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006026.png" /> equipped with a symmetric bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006027.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006028.png" /> is a Jordan triple system with respect to the product
+
Note that a triple system in this sense is completely different from, e.g., the combinatorial notion of a [[Steiner triple system]].
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006029.png" /></td> </tr></table>
+
====References====
 +
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  N. Jacobson,  "Lie and Jordan triple systems"  ''Amer. J. Math.'' , '''71'''  (1949)  pp. 149–170</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Kaup,  "Hermitian Jordan triple systems and the automorphisms of bounded symmetric domains" , ''Non Associative Algebra and Its Applications (Oviedo, 1993)'' , Kluwer Acad. Publ.  (1994)  pp. 204–214</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  O. Loos,  "Jordan triple systems, $R$-symmetric spaces, and bounded symmetric domains" ''Bull. Amer. Math. Soc.'' , '''77'''  (1971)  pp. 558–561</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  E. Neher,  "Jordan triple systems by the grid approach" , ''Lecture Notes in Mathematics'' , '''1280''' , Springer  (1987)  {{ZBL|0621.17001}}</TD></TR>
 +
<TR><TD valign="top">[a5]</TD> <TD valign="top"> S. Okubo,  N. Kamiya,  "Jordan–Lie super algebra and Jordan–Lie triple system"  ''J. Algebra'' , '''198''' :  2  (1997)  pp. 388–411</TD></TR>
 +
</table>
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006030.png" /> be a commutative [[Jordan algebra|Jordan algebra]]. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006031.png" /> is a Jordan triple system with respect to the product
+
{{TEX|done}}
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006032.png" /></td> </tr></table>
 
 
 
Note that a triple system in this sense is completely different from, e.g., the combinatorial notion of a Steiner triple system (cf. also [[Steiner system|Steiner system]]).
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N. Jacobson,  "Lie and Jordan triple systems"  ''Amer. J. Math.'' , '''71'''  (1949)  pp. 149–170</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Kaup,  "Hermitian Jordan triple systems and the automorphisms of bounded symmetric domains" , ''Non Associative Algebra and Its Applications (Oviedo, 1993)'' , Kluwer Acad. Publ.  (1994)  pp. 204–214</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  O. Loos,  "Jordan triple systems, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006033.png" />-symmetric spaces, and bounded symmetric domains"  ''Bull. Amer. Math. Soc.'' , '''77'''  (1971)  pp. 558–561</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  E. Nehr,  "Jordan triple systems by the graid approach" , ''Lecture Notes in Mathematics'' , '''1280''' , Springer  (1987)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  S. Okubo,  N. Kamiya,  "Jordan–Lie super algebra and Jordan–Lie triple system"  ''J. Algebra'' , '''198''' :  2  (1997)  pp. 388–411</TD></TR></table>
 

Latest revision as of 10:13, 30 April 2018

A triple system closely related to Jordan algebras.

A triple system is a vector space $V$ over a field $K$ together with a $K$-trilinear mapping $V \times V \times V \rightarrow V$, called a triple product and usually denoted by $\{ \cdot , \cdot , \cdot \}$ (sometimes dropping the commas).

It is said to be a Jordan triple system if $$ \{ u,v,w \} = \{ w,v,u \} \ , $$ $$ \{x,y,\{u,v,w\}\} = \{\{x,y,u\},v,w\} - \{u,\{y,x,v\},w\} + \{u,v,\{x,y,w\}\} $$ with $x,y,u,v,w \in V$.

From the algebraic viewpoint, a Jordan triple system $(V,\{,,\})$ is a Lie triple system with respect to the new triple product $$ [x,y,z] = \{x,y,z\} - \{y,x,z\} \ . $$

This implies that all simple Lie algebras over an algebraically closed field of characteristic zero, except $G_2$, $F_4$ and $E_8$ (cf. also Lie algebra), can be constructed using the standard embedding Lie algebra associated with a Lie triple system via a Jordan triple system.

From the geometrical viewpoint there is, for example, a correspondence between symmetric $R$-spaces and compact Jordan triple systems [a3] as well as a correspondence between bounded symmetric domains and Hermitian Jordan triple systems [a2].

For superversions of this triple system, see [a5].

Examples.

Let $D$ be an associative algebra over $K$ (cf. also Associative rings and algebras) and set $V = M_{p,q}(D)$, the $(p\times q)$-matrices over $D$. This vector space $V$ is a Jordan triple system with respect to the product $$ \{x,y,z\} = x y^\top z + z y^\top x $$ where $y^\top$ denotes the transpose matrix of $y$.

Let $V$ be a vector space over $K$ equipped with a symmetric bilinear form $(\cdot,\cdot)$. Then $V$ is a Jordan triple system with respect to the product $$ \{x,y,z\} = (x,y) z + (y,z) x - y (z,x) \ . $$

Let $J$ be a commutative Jordan algebra. Then $J$ is a Jordan triple system with respect to the product $$ \{x,y,z\} = x(yz) + (xy)z - y(xz) \ . $$

Note that a triple system in this sense is completely different from, e.g., the combinatorial notion of a Steiner triple system.

References

[a1] N. Jacobson, "Lie and Jordan triple systems" Amer. J. Math. , 71 (1949) pp. 149–170
[a2] W. Kaup, "Hermitian Jordan triple systems and the automorphisms of bounded symmetric domains" , Non Associative Algebra and Its Applications (Oviedo, 1993) , Kluwer Acad. Publ. (1994) pp. 204–214
[a3] O. Loos, "Jordan triple systems, $R$-symmetric spaces, and bounded symmetric domains" Bull. Amer. Math. Soc. , 77 (1971) pp. 558–561
[a4] E. Neher, "Jordan triple systems by the grid approach" , Lecture Notes in Mathematics , 1280 , Springer (1987) Zbl 0621.17001
[a5] S. Okubo, N. Kamiya, "Jordan–Lie super algebra and Jordan–Lie triple system" J. Algebra , 198 : 2 (1997) pp. 388–411
How to Cite This Entry:
Jordan triple system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jordan_triple_system&oldid=11502
This article was adapted from an original article by Noriaki Kamiya (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article