Namespaces
Variants
Actions

Difference between revisions of "Jacobian"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
''Jacobi determinant''
+
{{MSC|26B10|26B15}}
  
A determinant of a matrix of special form whose entries are first-order partial derivatives of functions. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054160/j0541601.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054160/j0541602.png" />, be given functions having first-order partial derivatives with respect to the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054160/j0541603.png" />. The Jacobian of these functions is the determinant
+
[[Category:Analysis]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054160/j0541604.png" /></td> </tr></table>
+
{{TEX|done}}
  
which for brevity is denoted by the symbol
+
====Jacobian Matrix====
 +
Also called [[Jacobi matrix]].
 +
Let $U\subset \mathbb R^n$, $f: U\to \mathbb R^m$ and assume that $f$ is differentiable at the point $y\in U$.
 +
The Jacobi matrix of $f$ at $y$ is then the matrix
 +
\begin{equation}\label{e:Jacobi_matrix}
 +
Df|_y := \left(
 +
\begin{array}{llll}
 +
\frac{\partial f^1}{\partial x_1} (y) & \frac{\partial f^1}{\partial x_2} (y)&\qquad \ldots \qquad & \frac{\partial f^1}{\partial x_n} (y)\\
 +
\frac{\partial f^2}{\partial x_1} (y) & \frac{\partial f^2}{\partial  x_2} (y)&\qquad \ldots \qquad & \frac{\partial f^2}{\partial  x_n} (y)\\
 +
\\
 +
\vdots & \vdots & &\vdots\\
 +
\\
 +
\frac{\partial f^m}{\partial x_1} (y) & \frac{\partial f^m}{\partial  x_2} (y)&\qquad \ldots \qquad & \frac{\partial f^m}{\partial  x_n} (y)
 +
\end{array}\right)\, ,
 +
\end{equation}
 +
where $(f^1, \ldots, f^m)$ are the coordinate functions of $f$ and $x_1,\ldots, x_n$ denote the standard system of coordinates in
 +
$\mathbb R^n$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054160/j0541605.png" /></td> </tr></table>
+
====Jacobian determinant====
 +
Also called ''Jacobi determinant''. If $U$, $f$ and $y$ are as above and $m=n$, the Jacobian determinant of $f$ at $y$ is the determinant of
 +
the Jacobian matrix \ref{e:Jacobi_matrix}. Some authors use the same name for the absolute value of such determinant. If $U$ is an open set
 +
and $f$ a locally invertible $C^1$ map, the absolute value of the Jacobian determinant gives the infinitesimal dilatation of the volume element
 +
in passing from the variables $x_1, \ldots, x_n$ to the variables $f_1,\ldots, f_n$. Therefore the Jacobian determinant plays a crucial role when [[Change of variables in an integral|changing variables in integrals]], see Sections 3.2 and 3.3 of {{Cite|EG}} (see also [[Differential form]] and [[Integration on  manifolds]]).
  
The modulus of a Jacobian characterizes the dilatation (contraction) of the volume element in the transition from the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054160/j0541606.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054160/j0541607.png" />. The name is given after C.G.J. Jacobi, who first studied its properties and applications.
+
====Generalizations of the Jacobian determinant====
 +
The Jacobian determinant can be generalized also to the case where the dimension of the target differs from that of the domain
 +
(see Section 3.2 of {{Cite|EG}}). More precisely,
 +
let $f$, $U$, $n$, $m$ and $y$ be as above:
 +
* If $m<n$, the Jacobian of $f$ at $y$ is given by the square root of the determinant of $Df_y\cdot (Df_y)^t$ (where $Df_y^t$ denotes the transpose of the matrix $Df_y$);
 +
* If $m>n$, the Jacobian of $f$ at $y$ is given by the square root of the determinant of $(Df_y)^t\cdot Df_y$.
 +
These generalizations play a key role respectively in the [[Coarea formula]] and [[Area formula]].
  
====References====
+
An important characterization of the Jacobian is then given by the [[Cauchy Binet formula]]: $Jf(y)^2$ is the sum of the squares of the determinants of all $n\times n$ minors of $Df|_y$ (cp. with Theorem 4 in Section 3.2.1 of {{Cite|EG}}).
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.A. Il'in,  E.G. Poznyak,  "Fundamentals of mathematical analysis" , '''1–2''' , MIR  (1982) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.D. Kudryavtsev,  "Mathematical analysis" , '''1–2''' , Moscow  (1973)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S.M. Nikol'skii,  "A course of mathematical analysis" , '''2''' , MIR  (1977)  (Translated from Russian)</TD></TR></table>
 
 
 
 
 
 
 
====Comments====
 
The above Jacobian is also denoted as
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054160/j0541608.png" /></td> </tr></table>
 
  
The entry at place <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054160/j0541609.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054160/j05416010.png" />-th row, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054160/j05416011.png" />-th column) is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054160/j05416012.png" />. The matrix with these entries is also called a Jacobian matrix (not to be confused with a [[Jacobi matrix|Jacobi matrix]]). The Jacobian plays a role in the statement of the inverse function theorem and in change-of-variable formulas for integrals and differential forms.
+
====Jacobian variety====
 +
See [[Jacobi variety]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Spivak,  "Calculus on manifolds" , Benjamin/Cummings (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Rudin,   "Principles of mathematical analysis" , McGraw-Hill  (1953)</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|EG}}|| L.C. Evans, R.F. Gariepy,  "Measure theory  and fine properties of functions" Studies in Advanced  Mathematics.  CRC  Press, Boca Raton, FL,  1992. {{MR|1158660}}  {{ZBL|0804.2800}}
 +
|-
 +
|valign="top"|{{Ref|Fe}}|| H. Federer, "Geometric measure theory", Springer-Verlag (1979). {{MR|0257325}} {{ZBL|0874.49001}}
 +
|-
 +
|valign="top"|{{Ref|IP}}|| V.A. Il'in,  E.G. Poznyak,  "Fundamentals of mathematical analysis" , '''1–2''' , MIR (1982) {{MR|0687827}} {{MR|0687828}}
 +
|-
 +
|valign="top"|{{Ref|Ku}}|| L.D. Kudryavtsev,  "Mathematical analysis" , '''1–2''' , Moscow (1973)  
 +
|-
 +
|valign="top"|{{Ref|Ma}}||    P. Mattila, "Geometry of sets and measures in euclidean spaces".    Cambridge Studies in Advanced Mathematics, 44. Cambridge University    Press, Cambridge,  1995. {{MR|1333890}} {{ZBL|0911.28005}}
 +
|-
 +
|valign="top"|{{Ref|Ni}}|| S.M. Nikol'skii,  "A course of mathematical analysis" , '''2''' , MIR (1977) {{MR|0796320}}{{ZBL|0479.00001}}
 +
|-
 +
|valign="top"|{{Ref|Ru}}|| W. Rudin, "Principles of mathematical analysis", Third edition, McGraw-Hill (1976) {{MR|038502}}  {{ZBL|0346.2600}}  
 +
|-
 +
|valign="top"|{{Ref|Si}}|| L. Simon, "Lectures on geometric measure theory", Proceedings of the Centre for Mathematical Analysis, 3. Australian National University. Canberra (1983) {{MR|0756417}} {{ZBL|0546.49019}}
 +
|-
 +
|valign="top"|{{Ref|Sp}}|| M. Spivak,  "Calculus on manifolds" , Benjamin/Cummings  (1965) {{MR|0209411}} {{ZBL|0141.05403}}
 +
|-
 +
|}

Latest revision as of 08:46, 18 November 2012

2020 Mathematics Subject Classification: Primary: 26B10 Secondary: 26B15 [MSN][ZBL]

Jacobian Matrix

Also called Jacobi matrix. Let $U\subset \mathbb R^n$, $f: U\to \mathbb R^m$ and assume that $f$ is differentiable at the point $y\in U$. The Jacobi matrix of $f$ at $y$ is then the matrix \begin{equation}\label{e:Jacobi_matrix} Df|_y := \left( \begin{array}{llll} \frac{\partial f^1}{\partial x_1} (y) & \frac{\partial f^1}{\partial x_2} (y)&\qquad \ldots \qquad & \frac{\partial f^1}{\partial x_n} (y)\\ \frac{\partial f^2}{\partial x_1} (y) & \frac{\partial f^2}{\partial x_2} (y)&\qquad \ldots \qquad & \frac{\partial f^2}{\partial x_n} (y)\\ \\ \vdots & \vdots & &\vdots\\ \\ \frac{\partial f^m}{\partial x_1} (y) & \frac{\partial f^m}{\partial x_2} (y)&\qquad \ldots \qquad & \frac{\partial f^m}{\partial x_n} (y) \end{array}\right)\, , \end{equation} where $(f^1, \ldots, f^m)$ are the coordinate functions of $f$ and $x_1,\ldots, x_n$ denote the standard system of coordinates in $\mathbb R^n$.

Jacobian determinant

Also called Jacobi determinant. If $U$, $f$ and $y$ are as above and $m=n$, the Jacobian determinant of $f$ at $y$ is the determinant of the Jacobian matrix \ref{e:Jacobi_matrix}. Some authors use the same name for the absolute value of such determinant. If $U$ is an open set and $f$ a locally invertible $C^1$ map, the absolute value of the Jacobian determinant gives the infinitesimal dilatation of the volume element in passing from the variables $x_1, \ldots, x_n$ to the variables $f_1,\ldots, f_n$. Therefore the Jacobian determinant plays a crucial role when changing variables in integrals, see Sections 3.2 and 3.3 of [EG] (see also Differential form and Integration on manifolds).

Generalizations of the Jacobian determinant

The Jacobian determinant can be generalized also to the case where the dimension of the target differs from that of the domain (see Section 3.2 of [EG]). More precisely, let $f$, $U$, $n$, $m$ and $y$ be as above:

  • If $m<n$, the Jacobian of $f$ at $y$ is given by the square root of the determinant of $Df_y\cdot (Df_y)^t$ (where $Df_y^t$ denotes the transpose of the matrix $Df_y$);
  • If $m>n$, the Jacobian of $f$ at $y$ is given by the square root of the determinant of $(Df_y)^t\cdot Df_y$.

These generalizations play a key role respectively in the Coarea formula and Area formula.

An important characterization of the Jacobian is then given by the Cauchy Binet formula: $Jf(y)^2$ is the sum of the squares of the determinants of all $n\times n$ minors of $Df|_y$ (cp. with Theorem 4 in Section 3.2.1 of [EG]).

Jacobian variety

See Jacobi variety.

References

[EG] L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR1158660 Zbl 0804.2800
[Fe] H. Federer, "Geometric measure theory", Springer-Verlag (1979). MR0257325 Zbl 0874.49001
[IP] V.A. Il'in, E.G. Poznyak, "Fundamentals of mathematical analysis" , 1–2 , MIR (1982) MR0687827 MR0687828
[Ku] L.D. Kudryavtsev, "Mathematical analysis" , 1–2 , Moscow (1973)
[Ma] P. Mattila, "Geometry of sets and measures in euclidean spaces". Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. MR1333890 Zbl 0911.28005
[Ni] S.M. Nikol'skii, "A course of mathematical analysis" , 2 , MIR (1977) MR0796320Zbl 0479.00001
[Ru] W. Rudin, "Principles of mathematical analysis", Third edition, McGraw-Hill (1976) MR038502 Zbl 0346.2600
[Si] L. Simon, "Lectures on geometric measure theory", Proceedings of the Centre for Mathematical Analysis, 3. Australian National University. Canberra (1983) MR0756417 Zbl 0546.49019
[Sp] M. Spivak, "Calculus on manifolds" , Benjamin/Cummings (1965) MR0209411 Zbl 0141.05403
How to Cite This Entry:
Jacobian. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jacobian&oldid=14954
This article was adapted from an original article by V.A. Il'in (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article