Namespaces
Variants
Actions

Difference between revisions of "Inverse parabolic partial differential equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (latex details)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
An equation of the form
+
<!--
 +
i0524001.png
 +
$#A+1 = 11 n = 0
 +
$#C+1 = 11 : ~/encyclopedia/old_files/data/I052/I.0502400 Inverse parabolic partial differential equation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052400/i0524001.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052400/i0524002.png" /></td> </tr></table>
+
An equation of the form
 
 
where the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052400/i0524003.png" /> is positive definite. The variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052400/i0524004.png" /> plays the role of "inverse"  time. The substitution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052400/i0524005.png" /> reduces equation (*) to the usual parabolic form. Parabolic equations of  "mixed"  type occur, for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052400/i0524006.png" /> is a direct parabolic equation for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052400/i0524007.png" /> and an inverse parabolic equation for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052400/i0524008.png" />, with degeneracy of the order for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052400/i0524009.png" />.
 
  
 +
\begin{equation}
 +
\label{eq:1}
 +
u _ {t} +
 +
\sum _ {i , j = 1 } ^ { n }
 +
a _ {ij} ( x , t ) u _ {x _ {i}  x _ {j} } -
 +
\sum _ { i=  1 }^ { n }
 +
a _ {i} ( x , t ) u _ {x _ {i}  } - a ( x , t ) u = f ( x , t ) ,
 +
\end{equation}
  
 +
where the form  $  \sum a _ {ij} \xi _ {i} \xi _ {j} $
 +
is positive definite. The variable  $  t $
 +
plays the role of  "inverse"  time. The substitution  $  t = - t  ^  \prime  $
 +
reduces equation (*) to the usual parabolic form. Parabolic equations of  "mixed"  type occur, for example,  $  u _ {t} = x u _ {xx} $
 +
is a direct parabolic equation for  $  x > 0 $
 +
and an inverse parabolic equation for  $  x < 0 $,
 +
with degeneracy of the order for  $  x = 0 $.
  
 
====Comments====
 
====Comments====
The [[Cauchy problem|Cauchy problem]] for an equation (*) is a well-known example of an ill-posed problem (cf. [[Ill-posed problems|Ill-posed problems]]). For a discussion of the backward heat equation (cf. also [[Thermal-conductance equation|Thermal-conductance equation]])
+
The [[Cauchy problem]] for an equation \eqref{eq:1} is a well-known example of an ill-posed problem (cf. [[Ill-posed problems]]). For a discussion of the backward heat equation (cf. also [[Thermal-conductance equation]])
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052400/i05240010.png" /></td> </tr></table>
+
$$
 +
u _ {t} + \Delta u  = 0
 +
$$
  
(<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052400/i05240011.png" /> being the [[Laplace operator|Laplace operator]]) see [[#References|[a1]]].
+
( $  \Delta $
 +
being the [[Laplace operator|Laplace operator]]) see [[#References|[a1]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.E. Payne,   "Improperly posed problems in partial differential equations" , SIAM  (1975)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> L.E. Payne, "Improperly posed problems in partial differential equations" , SIAM  (1975)</TD></TR>
 +
</table>

Latest revision as of 19:49, 4 November 2023


An equation of the form

\begin{equation} \label{eq:1} u _ {t} + \sum _ {i , j = 1 } ^ { n } a _ {ij} ( x , t ) u _ {x _ {i} x _ {j} } - \sum _ { i= 1 }^ { n } a _ {i} ( x , t ) u _ {x _ {i} } - a ( x , t ) u = f ( x , t ) , \end{equation}

where the form $ \sum a _ {ij} \xi _ {i} \xi _ {j} $ is positive definite. The variable $ t $ plays the role of "inverse" time. The substitution $ t = - t ^ \prime $ reduces equation (*) to the usual parabolic form. Parabolic equations of "mixed" type occur, for example, $ u _ {t} = x u _ {xx} $ is a direct parabolic equation for $ x > 0 $ and an inverse parabolic equation for $ x < 0 $, with degeneracy of the order for $ x = 0 $.

Comments

The Cauchy problem for an equation \eqref{eq:1} is a well-known example of an ill-posed problem (cf. Ill-posed problems). For a discussion of the backward heat equation (cf. also Thermal-conductance equation)

$$ u _ {t} + \Delta u = 0 $$

( $ \Delta $ being the Laplace operator) see [a1].

References

[a1] L.E. Payne, "Improperly posed problems in partial differential equations" , SIAM (1975)
How to Cite This Entry:
Inverse parabolic partial differential equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Inverse_parabolic_partial_differential_equation&oldid=19128
This article was adapted from an original article by A.P. Soldatov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article