Namespaces
Variants
Actions

Difference between revisions of "Integral separation condition"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
i0516401.png
 +
$#A+1 = 12 n = 0
 +
$#C+1 = 12 : ~/encyclopedia/old_files/data/I051/I.0501640 Integral separation condition
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A condition on a system of linear differential equations
 
A condition on a system of linear differential equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051640/i0516401.png" /></td> </tr></table>
+
$$
 +
\dot{x}  = A ( t) x ,\ \
 +
x \in \mathbf R  ^ {n}
 +
$$
  
(where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051640/i0516402.png" /> is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051640/i0516403.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051640/i0516404.png" />), requiring that the system has solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051640/i0516405.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051640/i0516406.png" />, satisfying for certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051640/i0516407.png" /> the inequalities
+
(where $  A $
 +
is a mapping $  \mathbf R \rightarrow  \mathop{\rm Hom} ( \mathbf R  ^ {n} , \mathbf R  ^ {n} ) $
 +
with $  \sup _ {t \in \mathbf R }  \| A ( t) \| < \infty $),  
 +
requiring that the system has solutions $  x _ {i} ( t) $,  
 +
$  i = 1 \dots n $,  
 +
satisfying for certain $  a , d > 0 $
 +
the inequalities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051640/i0516408.png" /></td> </tr></table>
+
$$
 +
| x _ {i} ( t) | \cdot | x _ {i} ( \tau ) |  ^ {-} 1  \geq  \
 +
d e ^ {a ( t - \tau ) } \cdot
 +
| x _ {i-} 1 ( t) | \cdot | x _ {i-} 1 ( \tau ) |  ^ {-} 1
 +
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051640/i0516409.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051640/i05164010.png" />.
+
for all $  i = 2 \dots n $
 +
and all $  t \geq  \tau \geq  0 $.
  
 
The set of systems satisfying the integral separation condition is the interior of the set of continuity of all Lyapunov characteristic exponents (cf. [[Lyapunov characteristic exponent|Lyapunov characteristic exponent]]) in the space of systems
 
The set of systems satisfying the integral separation condition is the interior of the set of continuity of all Lyapunov characteristic exponents (cf. [[Lyapunov characteristic exponent|Lyapunov characteristic exponent]]) in the space of systems
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051640/i05164011.png" /></td> </tr></table>
+
$$
 +
\dot{x}  = A ( t) x ,\ \
 +
\sup _ {x \in \mathbf R }  \| A ( t) \|  < + \infty ,
 +
$$
  
 
with metric
 
with metric
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051640/i05164012.png" /></td> </tr></table>
+
$$
 +
\rho ( A ( t) , B ( t) )  = \
 +
\sup _ {t \in \mathbf R }  \| A ( t) - B ( t) \| .
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.A. Izobov,  "Linear systems of ordinary differential equations"  ''J. Soviet Math.'' , '''5''' :  1  (1976)  pp. 46–96  ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12'''  (1974)  pp. 71–146</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.A. Izobov,  "Linear systems of ordinary differential equations"  ''J. Soviet Math.'' , '''5''' :  1  (1976)  pp. 46–96  ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12'''  (1974)  pp. 71–146</TD></TR></table>

Latest revision as of 22:12, 5 June 2020


A condition on a system of linear differential equations

$$ \dot{x} = A ( t) x ,\ \ x \in \mathbf R ^ {n} $$

(where $ A $ is a mapping $ \mathbf R \rightarrow \mathop{\rm Hom} ( \mathbf R ^ {n} , \mathbf R ^ {n} ) $ with $ \sup _ {t \in \mathbf R } \| A ( t) \| < \infty $), requiring that the system has solutions $ x _ {i} ( t) $, $ i = 1 \dots n $, satisfying for certain $ a , d > 0 $ the inequalities

$$ | x _ {i} ( t) | \cdot | x _ {i} ( \tau ) | ^ {-} 1 \geq \ d e ^ {a ( t - \tau ) } \cdot | x _ {i-} 1 ( t) | \cdot | x _ {i-} 1 ( \tau ) | ^ {-} 1 $$

for all $ i = 2 \dots n $ and all $ t \geq \tau \geq 0 $.

The set of systems satisfying the integral separation condition is the interior of the set of continuity of all Lyapunov characteristic exponents (cf. Lyapunov characteristic exponent) in the space of systems

$$ \dot{x} = A ( t) x ,\ \ \sup _ {x \in \mathbf R } \| A ( t) \| < + \infty , $$

with metric

$$ \rho ( A ( t) , B ( t) ) = \ \sup _ {t \in \mathbf R } \| A ( t) - B ( t) \| . $$

References

[1] N.A. Izobov, "Linear systems of ordinary differential equations" J. Soviet Math. , 5 : 1 (1976) pp. 46–96 Itogi Nauk. i Tekhn. Mat. Anal. , 12 (1974) pp. 71–146
How to Cite This Entry:
Integral separation condition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_separation_condition&oldid=11798
This article was adapted from an original article by V.M. Millionshchikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article