Namespaces
Variants
Actions

Difference between revisions of "Homology with compact support"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A partially exact homology theory (cf. [[Homology theory|Homology theory]]) which satisfies the following axiom of compact support: For each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h0478701.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h0478702.png" />-dimensional group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h0478703.png" /> of an arbitrary pair of spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h0478704.png" /> there exists a compact pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h0478705.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h0478706.png" /> is contained in the image of the homomorphism
+
<!--
 +
h0478701.png
 +
$#A+1 = 28 n = 1
 +
$#C+1 = 28 : ~/encyclopedia/old_files/data/H047/H.0407870 Homology with compact support
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h0478707.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
which is induced by the inclusion. If the homology theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h0478708.png" /> is exact and has compact support, the following theorem is valid: For any element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h0478709.png" /> which belongs to the kernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787010.png" /> there exists a compact pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787011.png" /> such that
+
A partially exact homology theory (cf. [[Homology theory|Homology theory]]) which satisfies the following axiom of compact support: For each element h $
 +
of the $  r $-
 +
dimensional group  $  H _ {r} ( X, A) $
 +
of an arbitrary pair of spaces  $  ( X, A) $
 +
there exists a compact pair $  ( X  ^  \prime  , A  ^  \prime  ) \subset  ( X, A) $
 +
such that $  h $
 +
is contained in the image of the homomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787012.png" /></td> </tr></table>
+
$$
 +
\mu : H _ {r} ( X  ^  \prime  , A  ^  \prime  )  \rightarrow  H _ {r} ( X, A)
 +
$$
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787013.png" /> belongs to the kernel of the homomorphism
+
which is induced by the inclusion. If the homology theory  $  H $
 +
is exact and has compact support, the following theorem is valid: For any element  $  h \in H _ {r} ( X  ^  \prime  , A  ^  \prime  ) $
 +
which belongs to the kernel of $  \mu $
 +
there exists a compact pair  $  ( X  ^ {\prime\prime} , A  ^ {\prime\prime} ) $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787014.png" /></td> </tr></table>
+
$$
 +
( X  ^  \prime  , A  ^  \prime  )  \subset  ( X  ^ {\prime\prime} , A  ^ {\prime\prime} )  \subset  ( X,\
 +
A) ,
 +
$$
  
An exact theory has compact support if and only if for any pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787015.png" /> the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787016.png" /> is the direct limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787018.png" /> runs through the compact pairs contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787019.png" />. An exact homology theory with compact support is unique on the category of arbitrary (non-compact) polyhedral pairs for a given coefficient group and is equivalent to the singular theory. For a general homology theory, in addition to the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787020.png" /> there is also the group
+
and h $
 +
belongs to the kernel of the homomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787021.png" /></td> </tr></table>
+
$$
 +
H _ {r} ( X  ^  \prime  , A  ^  \prime  )  \rightarrow  H _ {r} ( X  ^ {\prime\prime} , A  ^ {\prime\prime} ).
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787022.png" /> are compact subpairs in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787023.png" />. The singular homology group, having compact support, is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787024.png" />. In spectral theory one also considers — in addition to the Aleksandrov–Čech homology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787025.png" /> and the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787026.png" /> — the group which is the image of the natural homomorphism
+
An exact theory has compact support if and only if for any pair  $  ( X, A) $
 +
the group  $  H _ {r} ( X, A) $
 +
is the direct limit  $  \lim\limits _  \rightarrow  \{ H _ {r} ( X  ^  \prime  , A  ^  \prime  ) \} $,
 +
where $  ( X  ^  \prime  , A  ^  \prime  ) $
 +
runs through the compact pairs contained in $  ( X, A) $.  
 +
An exact homology theory with compact support is unique on the category of arbitrary (non-compact) polyhedral pairs for a given coefficient group and is equivalent to the singular theory. For a general homology theory, in addition to the group $  H _ {r} ( X, A) $
 +
there is also the group
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787027.png" /></td> </tr></table>
+
$$
 +
H _ {r}  ^ {c} ( X, A)  = \
 +
\lim\limits _  \rightarrow  \{ H _ {r} ( X  ^  \prime  , A  ^  \prime  ) \} ,
 +
$$
  
This group, like the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787028.png" />, satisfies the axiom of compact support, but in spectral theory it is the latter group which has the name of homology with compact support. In spectral theory these three groups differ from one another, and each of them is the object of a duality theorem, both for a discrete and for a compact group of coefficients (cf. [[Duality|Duality]] in topology).
+
where  $  ( X  ^  \prime  , A  ^  \prime  ) $
 +
are compact subpairs in  $  ( X, A) $.
 +
The singular homology group, having compact support, is isomorphic to  $  H _ {r}  ^ {c} ( X, A) $.
 +
In spectral theory one also considers — in addition to the Aleksandrov–Čech homology groups  $  H _ {r} ( X, A) $
 +
and the groups  $  H _ {r}  ^ {c} ( X, A) $—
 +
the group which is the image of the natural homomorphism
 +
 
 +
$$
 +
H _ {r}  ^ {c} ( X, A)  \rightarrow  H _ {r} ( X, A) .
 +
$$
 +
 
 +
This group, like the group $  H _ {r}  ^ {c} ( X, A) $,  
 +
satisfies the axiom of compact support, but in spectral theory it is the latter group which has the name of homology with compact support. In spectral theory these three groups differ from one another, and each of them is the object of a duality theorem, both for a discrete and for a compact group of coefficients (cf. [[Duality|Duality]] in topology).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.E. Steenrod,  S. Eilenberg,  "Foundations of algebraic topology" , Princeton Univ. Press  (1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.S. Aleksandrov,  "General duality theorems for non-closed sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787029.png" />-dimensional space"  ''Mat. Sb.'' , '''21 (63)''' :  2  (1947)  pp. 161–232  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.H. Spanier,  "Algebraic topology" , McGraw-Hill  (1966)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.E. Steenrod,  S. Eilenberg,  "Foundations of algebraic topology" , Princeton Univ. Press  (1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.S. Aleksandrov,  "General duality theorems for non-closed sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047870/h04787029.png" />-dimensional space"  ''Mat. Sb.'' , '''21 (63)''' :  2  (1947)  pp. 161–232  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.H. Spanier,  "Algebraic topology" , McGraw-Hill  (1966)</TD></TR></table>

Latest revision as of 22:11, 5 June 2020


A partially exact homology theory (cf. Homology theory) which satisfies the following axiom of compact support: For each element $ h $ of the $ r $- dimensional group $ H _ {r} ( X, A) $ of an arbitrary pair of spaces $ ( X, A) $ there exists a compact pair $ ( X ^ \prime , A ^ \prime ) \subset ( X, A) $ such that $ h $ is contained in the image of the homomorphism

$$ \mu : H _ {r} ( X ^ \prime , A ^ \prime ) \rightarrow H _ {r} ( X, A) $$

which is induced by the inclusion. If the homology theory $ H $ is exact and has compact support, the following theorem is valid: For any element $ h \in H _ {r} ( X ^ \prime , A ^ \prime ) $ which belongs to the kernel of $ \mu $ there exists a compact pair $ ( X ^ {\prime\prime} , A ^ {\prime\prime} ) $ such that

$$ ( X ^ \prime , A ^ \prime ) \subset ( X ^ {\prime\prime} , A ^ {\prime\prime} ) \subset ( X,\ A) , $$

and $ h $ belongs to the kernel of the homomorphism

$$ H _ {r} ( X ^ \prime , A ^ \prime ) \rightarrow H _ {r} ( X ^ {\prime\prime} , A ^ {\prime\prime} ). $$

An exact theory has compact support if and only if for any pair $ ( X, A) $ the group $ H _ {r} ( X, A) $ is the direct limit $ \lim\limits _ \rightarrow \{ H _ {r} ( X ^ \prime , A ^ \prime ) \} $, where $ ( X ^ \prime , A ^ \prime ) $ runs through the compact pairs contained in $ ( X, A) $. An exact homology theory with compact support is unique on the category of arbitrary (non-compact) polyhedral pairs for a given coefficient group and is equivalent to the singular theory. For a general homology theory, in addition to the group $ H _ {r} ( X, A) $ there is also the group

$$ H _ {r} ^ {c} ( X, A) = \ \lim\limits _ \rightarrow \{ H _ {r} ( X ^ \prime , A ^ \prime ) \} , $$

where $ ( X ^ \prime , A ^ \prime ) $ are compact subpairs in $ ( X, A) $. The singular homology group, having compact support, is isomorphic to $ H _ {r} ^ {c} ( X, A) $. In spectral theory one also considers — in addition to the Aleksandrov–Čech homology groups $ H _ {r} ( X, A) $ and the groups $ H _ {r} ^ {c} ( X, A) $— the group which is the image of the natural homomorphism

$$ H _ {r} ^ {c} ( X, A) \rightarrow H _ {r} ( X, A) . $$

This group, like the group $ H _ {r} ^ {c} ( X, A) $, satisfies the axiom of compact support, but in spectral theory it is the latter group which has the name of homology with compact support. In spectral theory these three groups differ from one another, and each of them is the object of a duality theorem, both for a discrete and for a compact group of coefficients (cf. Duality in topology).

References

[1] N.E. Steenrod, S. Eilenberg, "Foundations of algebraic topology" , Princeton Univ. Press (1966)
[2] P.S. Aleksandrov, "General duality theorems for non-closed sets in -dimensional space" Mat. Sb. , 21 (63) : 2 (1947) pp. 161–232 (In Russian)
[3] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)
How to Cite This Entry:
Homology with compact support. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homology_with_compact_support&oldid=11690
This article was adapted from an original article by G.S. Chogoshvili (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article