Namespaces
Variants
Actions

Difference between revisions of "Hilbert theory of integral equations"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
h0474201.png
 +
$#A+1 = 15 n = 0
 +
$#C+1 = 15 : ~/encyclopedia/old_files/data/H047/H.0407420 Hilbert theory of integral equations
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A general theory of linear integral equations of the second kind,
 
A general theory of linear integral equations of the second kind,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h0474201.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\phi ( x) + \int\limits _ { a } ^ { b }  K ( x, s) \phi ( s)  ds  = f ( x),
 +
$$
  
established by D. Hilbert [[#References|[1]]] on the basis of his theory of linear and bilinear forms in an infinite number of variables. The principal idea of the theory is as follows. Let there be given a complete orthonormal system of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h0474202.png" /> on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h0474203.png" /> and let
+
established by D. Hilbert [[#References|[1]]] on the basis of his theory of linear and bilinear forms in an infinite number of variables. The principal idea of the theory is as follows. Let there be given a complete orthonormal system of functions $  \{ \omega _ {n} ( x) \} $
 +
on the interval $  ( a, b) $
 +
and let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h0474204.png" /></td> </tr></table>
+
$$
 +
\phi _ {p}  = \int\limits _ { a } ^ { b }  \phi ( t) \omega _ {p} ( t)  dt,\ \
 +
f _ {p}  = \int\limits _ { a } ^ { b }  f ( t) \omega _ {p} ( t)  dt,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h0474205.png" /></td> </tr></table>
+
$$
 +
a _ {pq}  = \int\limits _ { a } ^ { b }  \int\limits _ { a } ^ { b }  K
 +
( x, t) \omega _ {p} ( t) \omega _ {q} ( t)  dx  dt.
 +
$$
  
 
Solving the integral equation (1) is then equivalent to solving the infinite system of linear algebraic equations
 
Solving the integral equation (1) is then equivalent to solving the infinite system of linear algebraic equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h0474206.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\phi _ {p} + \sum _ {q = 1 } ^  \infty 
 +
a _ {pq} \phi _ {q}  = f _ {p} ,\ \
 +
p = 1, 2 ,\dots .
 +
$$
  
 
Here only those solutions of the system for which
 
Here only those solutions of the system for which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h0474207.png" /></td> </tr></table>
+
$$
 +
\sum _ {p = 1 } ^  \infty  \phi _ {p}  ^ {2}  < + \infty
 +
$$
  
 
are considered, i.e. the system is considered in a [[Hilbert space|Hilbert space]]. The study of (2) in a Hilbert space makes it possible to study the properties of equation (1).
 
are considered, i.e. the system is considered in a [[Hilbert space|Hilbert space]]. The study of (2) in a Hilbert space makes it possible to study the properties of equation (1).
Line 24: Line 52:
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D. Hilbert,  "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint  (1953)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D. Hilbert,  "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint  (1953)</TD></TR></table>
  
 +
====Comments====
 +
If  $  K $
 +
is Hermitian and the  $  \{ \omega _ {n} \} $
 +
are chosen as a complete orthonormal system of eigen functions corresponding to the eigen values  $  \lambda _ {n} $
 +
of the integral operator, then the system (2) becomes diagonal; solving it leads to the representation
  
 +
$$
 +
\phi  =  \sum _ { p= } 1 ^  \infty 
 +
\frac{f _ {p} }{1+ \lambda _ {p} }
  
====Comments====
+
\omega _ {p}  $$
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h0474208.png" /> is Hermitian and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h0474209.png" /> are chosen as a complete orthonormal system of eigen functions corresponding to the eigen values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h04742010.png" /> of the integral operator, then the system (2) becomes diagonal; solving it leads to the representation
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h04742011.png" /></td> </tr></table>
 
  
 
if the conditions of the [[Fredholm alternative|Fredholm alternative]] are fulfilled. If instead of (1) the more general equation
 
if the conditions of the [[Fredholm alternative|Fredholm alternative]] are fulfilled. If instead of (1) the more general equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h04742012.png" /></td> </tr></table>
+
$$
 +
\lambda \phi ( x) + \int\limits _ { a } ^ { b }  K ( x, s) \phi ( s)  ds  = f( x)
 +
$$
  
 
is considered, then
 
is considered, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h04742013.png" /></td> </tr></table>
+
$$
 +
\phi  = \sum _ { p= } 1 ^  \infty 
 +
\frac{f _ {p} }{1+ \lambda _ {p} }
 +
 
 +
\omega _ {p} ,
 +
$$
  
which holds also for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h04742014.png" />, i.e. for the case of integral equations of the first kind (see [[Hilbert–Schmidt series|Hilbert–Schmidt series]]).
+
which holds also for $  \lambda = 0 $,  
 +
i.e. for the case of integral equations of the first kind (see [[Hilbert–Schmidt series|Hilbert–Schmidt series]]).
  
The important thing is to consider the concrete integral equation (1) as an abstract linear operator equation on the Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047420/h04742015.png" />, so that the whole theory of Hilbert spaces, of which the discussion in the main article above is just one aspect, is available.
+
The important thing is to consider the concrete integral equation (1) as an abstract linear operator equation on the Hilbert space $  L _ {2} [ a, b ] $,
 +
so that the whole theory of Hilbert spaces, of which the discussion in the main article above is just one aspect, is available.
  
 
For more information and additional references see [[Integral equation with symmetric kernel|Integral equation with symmetric kernel]].
 
For more information and additional references see [[Integral equation with symmetric kernel|Integral equation with symmetric kernel]].

Latest revision as of 22:10, 5 June 2020


A general theory of linear integral equations of the second kind,

$$ \tag{1 } \phi ( x) + \int\limits _ { a } ^ { b } K ( x, s) \phi ( s) ds = f ( x), $$

established by D. Hilbert [1] on the basis of his theory of linear and bilinear forms in an infinite number of variables. The principal idea of the theory is as follows. Let there be given a complete orthonormal system of functions $ \{ \omega _ {n} ( x) \} $ on the interval $ ( a, b) $ and let

$$ \phi _ {p} = \int\limits _ { a } ^ { b } \phi ( t) \omega _ {p} ( t) dt,\ \ f _ {p} = \int\limits _ { a } ^ { b } f ( t) \omega _ {p} ( t) dt, $$

$$ a _ {pq} = \int\limits _ { a } ^ { b } \int\limits _ { a } ^ { b } K ( x, t) \omega _ {p} ( t) \omega _ {q} ( t) dx dt. $$

Solving the integral equation (1) is then equivalent to solving the infinite system of linear algebraic equations

$$ \tag{2 } \phi _ {p} + \sum _ {q = 1 } ^ \infty a _ {pq} \phi _ {q} = f _ {p} ,\ \ p = 1, 2 ,\dots . $$

Here only those solutions of the system for which

$$ \sum _ {p = 1 } ^ \infty \phi _ {p} ^ {2} < + \infty $$

are considered, i.e. the system is considered in a Hilbert space. The study of (2) in a Hilbert space makes it possible to study the properties of equation (1).

Hilbert's theory of integral equations gives a foundation for the extremal properties of the eigen values of integral equations with a Hermitian kernel.

References

[1] D. Hilbert, "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint (1953)

Comments

If $ K $ is Hermitian and the $ \{ \omega _ {n} \} $ are chosen as a complete orthonormal system of eigen functions corresponding to the eigen values $ \lambda _ {n} $ of the integral operator, then the system (2) becomes diagonal; solving it leads to the representation

$$ \phi = \sum _ { p= } 1 ^ \infty \frac{f _ {p} }{1+ \lambda _ {p} } \omega _ {p} $$

if the conditions of the Fredholm alternative are fulfilled. If instead of (1) the more general equation

$$ \lambda \phi ( x) + \int\limits _ { a } ^ { b } K ( x, s) \phi ( s) ds = f( x) $$

is considered, then

$$ \phi = \sum _ { p= } 1 ^ \infty \frac{f _ {p} }{1+ \lambda _ {p} } \omega _ {p} , $$

which holds also for $ \lambda = 0 $, i.e. for the case of integral equations of the first kind (see Hilbert–Schmidt series).

The important thing is to consider the concrete integral equation (1) as an abstract linear operator equation on the Hilbert space $ L _ {2} [ a, b ] $, so that the whole theory of Hilbert spaces, of which the discussion in the main article above is just one aspect, is available.

For more information and additional references see Integral equation with symmetric kernel.

How to Cite This Entry:
Hilbert theory of integral equations. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_theory_of_integral_equations&oldid=16197
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article